概率与期望值问题? 100
请问:
1、游戏结束时,甲、乙获胜的概率分别是多少?
2、游戏预期进行的盘数是多少? 展开
这类题型在2019年高考数学全国卷1中出现过
第1问:
设在某把游戏前甲剩余的钱是n元,此时继续进行游戏,甲获胜的概率为P(n),则
P(0)=0,P(9)=1,
当n既不是0,又不是9时,继续进行游戏分为三种情况:
(1) 甲赢了一把,n加上1,继续游戏直至游戏结束(如果甲已经赢了,可以视作继续进行0次游戏,可以并入这种情况)
(2) 甲输了一把,n减掉1,继续游戏直至游戏结束(如果甲已经输了,可以并入这种情况)
(3) 甲乙平局,n不变,继续游戏直至游戏结束
于是P(甲最终赢)=P(甲这次赢,并最终赢)+P(甲这次输,但最终赢)+P(这次平局,甲最终赢)
所以得到递推公式P(n)=0.4×P(n+1) + 0.5×P(n-1) + 0.1×P(n)
根据递推公式和P(0)=0,P(9)=1,可以解出P(n)=k×(5^n/4^n-1),其中k=4^9/(5^9-4^9)
初始时n=3,P(3)=4096/27721≈0.14758
因此甲最终获胜的概率为0.14758,乙最终获胜的概率为1-P(3)≈0.85242
第2问:
设某把游戏前,甲剩余的钱为n元,此时再进行k次游戏后游戏结束,对于每一个n,k的期望是E(n)
则E(0)=E(9)=0
经过和第一问类似的分类讨论,可以得出递推公式(数学期望可以分类分别求期望,然后求期望的期望)
E(n)=0.4×E(n+1) + 0.5×E(n-1) + 0.1×E(n) + 1
接下来计算方法和第1问差不多