求y=cosx y=tanx图像的交点! 注意是cos 不是sin!
1个回答
展开全部
先看[0,2π]上的交点.
cosx=tanx=sinx/cosx (cosx)^2=1-(sinx)^2=sinx
(sinx)^2+sinx-1=0 sinx=(√5-1)/2 sinx=(-√5-1)/2(舍去)
sinx=(√5-1)/2,则x=arcsin(√5-1)/2和x=π-arcsin(√5-1)/2.在[0,2π]只有这两点.
sinx=(√5-1)/2时,y=cosx=√[1-(sinx)^2]=(3-√5)/2,y=cosx=-√[1-(sinx)^2]=(√5-3)/2.
y=cosx y=tanx图像的交点是:
(2kπ+arcsin(√5-1)/2,(3-√5)/2)和(2(k+1)π-arcsin(√5-1)/2,(√5-3)/2)
cosx=tanx=sinx/cosx (cosx)^2=1-(sinx)^2=sinx
(sinx)^2+sinx-1=0 sinx=(√5-1)/2 sinx=(-√5-1)/2(舍去)
sinx=(√5-1)/2,则x=arcsin(√5-1)/2和x=π-arcsin(√5-1)/2.在[0,2π]只有这两点.
sinx=(√5-1)/2时,y=cosx=√[1-(sinx)^2]=(3-√5)/2,y=cosx=-√[1-(sinx)^2]=(√5-3)/2.
y=cosx y=tanx图像的交点是:
(2kπ+arcsin(√5-1)/2,(3-√5)/2)和(2(k+1)π-arcsin(√5-1)/2,(√5-3)/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询