
解微分方程y'+2xy=e^(-x^2)满足初始条件y(0)=2的特解
1个回答
展开全部
y'+2xy=xe^(-x)
y'+2xy=0
y'=-2xy
dy/y=-2xdx
y=C0e^(-x^2)
设y=c0(x)e^(-x^2)
C0'e^(-x^2)=xe^(-x)
dC0=xe^(x^2-x)dx
∫xe^(x^2-x)dx=(1/2)∫(2x)e^(x^2-x)dx=(1/2)∫e^(x^2)d(x^2)/e^x=(1/2)∫de^(x^2)/e^x
=(1/2)∫d(e^x^2)/(e^(x^2))^(1/2)
=(e^x^2)^(1/2) +C1
dC0=d(e^(x^2))^(1/2)
C0(x)=(e^(x^2))^(1/2)+C1
y=(e^x^2)^(1/2-1)+C1e^(-x^2)
=e^(-x)+C1e^(-x^2)
y'+2xy=0
y'=-2xy
dy/y=-2xdx
y=C0e^(-x^2)
设y=c0(x)e^(-x^2)
C0'e^(-x^2)=xe^(-x)
dC0=xe^(x^2-x)dx
∫xe^(x^2-x)dx=(1/2)∫(2x)e^(x^2-x)dx=(1/2)∫e^(x^2)d(x^2)/e^x=(1/2)∫de^(x^2)/e^x
=(1/2)∫d(e^x^2)/(e^(x^2))^(1/2)
=(e^x^2)^(1/2) +C1
dC0=d(e^(x^2))^(1/2)
C0(x)=(e^(x^2))^(1/2)+C1
y=(e^x^2)^(1/2-1)+C1e^(-x^2)
=e^(-x)+C1e^(-x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询