常函数是单调函数吗

 我来答
科创17
2022-07-08 · TA获得超过5929个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:178万
展开全部

常函数是单调函数。因为它既满足:F(x1)>=F(x2),又满足F(x1)<=F(x2), 所以既是单增,又是单减。严格意义上讲,常函数是单调函数,但不是严格单调函数。不同教材对单调的解释不同,有的教材单调指的就是严格单调,有的则作区分。

常函数的性质

1、周期函数的定义:对于函数y=f(x),若存在常数T≠0,使得f(x+T) = f(x),则函数y= f(x)称为周期函数,T称为此函数的周期。

性质1:若T是函数y=f(x)的任意一个周期,则T的相反数(-T)也是f(x)的周期。

性质2:若T是函数f(x)的周期,则对于任意的整数n(n≠0),nT也是f(x)的周期。

性质3:若T1、T2都为函数f(x)的周期,且T1±T2≠0,则T1±T2也是f(x)的周期。

2、定义:在函数f(x)的周期的集合中,我们称其正数者为函数f(x)的正周期,称其负数者为函数f(x)的负周期。若所有正周期中存在最小的一个,则我们称之为函数f(x)的最小正周期,记作T※。

性质4:若T※为函数f(x)的最小正周期,T为函数f(x)的任意一个周期,则 Z -(非零整数)。

性质5:若函数f(x)存在最小正周期T※,且T1、T2分别为函数f(x)的任意两个周期,则 为有理数。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式