如何做数据分析

 我来答
清海逸4f
2021-07-23 · TA获得超过167个赞
知道答主
回答量:141
采纳率:96%
帮助的人:55.6万
展开全部

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

通过面向企业业务场景提供一站式大数据分析解决方案,能够为企业在增收益、降成本、提效率、控成本等四个角度带来价值贡献。

1、增收益

最直观的应用,即利用数据分析实现数字化精准营销。通过深度分析用户购买行为、消费习惯等,刻画用户画像,将数据分析结果转化为可操作执行的客户管理策略,以最佳的方式触及更多的客户,以实现销售收入的增长。

下图为推广收支测算分析,为广告投放提供决策依据。

下图为渠道销量分析,为渠道支持提供数据支撑。

2、降成本

例如通过数据分析实现对财务和人力的管理,从而控制各项成本、费用的支出,实现降低成本的作用。

下图为生产成本分析,了解成本构成情况。

下图为期间费用预实对比分析,把控费用情况。


3、提效率

每个企业都会出具相关报表,利用数据分析工具,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。

通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。

4、控风险

预算是否超支?债务是否逾期?是否缺货了、断货了?客户的回款率怎么样?设备的运行是否正常?哪种产品是否需要加速生产以实现产销平衡?...其实,几乎每个企业都会遇到各种各样的风险问题。通过数据分析,能够帮助企业进行实时监测,对偏离了预算的部分、对偏离了正常范围的数值能够进行主动预警,降低企业风险。

下图为税负率指标,当综合税负率过高,可以实现提示和预警。


下图为重要指标预警,重点监控项目的毛利率。

白子屡188
2022-06-11 · TA获得超过353个赞
知道小有建树答主
回答量:257
采纳率:100%
帮助的人:58.9万
展开全部

做数据分析,需要从数据和分析两个方向共同入手:

1、数据培养

数据培养是进行有效数据分析的基础建设,不是什么数据都可以用来进行数据分析的,企业在注重数据量的积累的同时,还要注重数据积累的质量,将数据培养的意识和任务要求相结合,自上而下推行数据培养的机制。

举个例子,很多企业意识到了信息化、数字化建设的重要性,将部署商业智能BI进行信息化建设提上了日程。但在商业智能BI项目规划时,很容易发现企业根本没有部署商业智能BI进行数据分析可视化的条件,原因就是数据缺漏、错误频出,相关的业务部门系统数据库也没有建设,缺少业务数据,这就是没有把数据培养做起来的后果。

数据仓库-派可数据商业智能BI

想要培养高质量的数据,必须提前做好数据培养规划,动员企业全体员工共同完成数据的管理机制。这不是什么短期内就能完成的工作,而是需要员工在日常业务活动中,按照统一的流程、规范来生产、管理数据,长期坚持下来,在业务活动中沉淀数据,按照规范化、流程化、标准化逐步填补企业的关键数据库。

当然,让员工执行数据培养任务不能只靠规定来强制执行,要建立完善的奖惩制度,将数据作为日常的考核指标。同时,企业还应该部署业务信息系统,让企业的财务、销售、生产、运营等不同部门员工有数据培养的工具,在完成业务活动后自动传输数据,将日常业务过程、流程中的数据沉淀到系统后台数据库中。

2、分析方法

分析方法是有效利用数据、实现数据价值的重要手段。如果没有数据分析方面的人才和熟练的分析方法运用,即使有再好的数据,也无法转化为富有价值的信息。进行数据分析前,数据分析人员必须熟练掌握主流的分析方法,比如对比分析、象限分析、趋势分析、描述性分析、预测分析等。

举个简单的例子,人类天生就对数字的大小有很强的敏感性,拿一组没有任何标识的数据展示,人们一眼看过去就会分析出它们的大小差异,如果这些数据之间相互有关联,那这就是有效的对比分析。

分析方法-派可数据商业智能BI

一般用到对比分析,通常是在选定的时间区域内,对比业务在不同情况下的差异,分析出业务是进行了增长还是发生了缩减的情况。

例如,上图中2021年9月的销量相比8月的销量有所减少,这时候就要深入分析为什么环比销量会减少,可以考虑调取今年3月和去年3月的产品生产数量,看看是不是生产环比下降,导致销量较少。同理,还可以把供应链、经销商、人流量等等都拿进行对比分析,确认到底是什么影响了销量。

总之,对比分析的优势就是能够很清晰地分析不同数值之间的差异,从而得到这些差异背后形成的原因。

派可数据 商业智能BI可视化分析平台

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
张老师lili
2023-03-28 · 超过15用户采纳过TA的回答
知道答主
回答量:89
采纳率:100%
帮助的人:1.7万
展开全部
数据分析是一种通过收集和分析数据来获取有意义信息的技术。以下是一些常用的数据分析步骤:
规划和准备-确定所需数据和数据源及其可行性,收集数据或访问数据,清理数据并准备好准确、完整、有用的数据清单。
探索性数据分析-用统计方法和可视化技术探索数据,了解数据的特征和趋势,查找异常值和错误。
建立假设-根据数据的特征和趋势制定假设,概括数据的特征和规律。
确认假设-确认假设是否为真,包括检验统计数据和根据数据进行模拟实验等。
生成模型-根据数据和模型建立模型,如回归模型和分类模型,然后进行模型和数据的校准。
报告数据-用数据可视化、统计表格和图形等方式进行数据分析的结果呈现,以便让人们更好地理解分析的结果。
数据分析应用-应用分析结果进行预测和决策,例如,将分析结果用于业务推广、营销策略、销售预测等。
以上是一些基本的数据分析步骤,但是正确的数据分析需要根据具体情况而定,并需要对相关工具和技术有深入了解。因此,如果您想进行数据分析,请确保有足够的资源、技能和知识。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式