极限的四则运算法则

 我来答
手行小9617
2021-11-14 · TA获得超过176个赞
知道答主
回答量:213
采纳率:95%
帮助的人:52.4万
展开全部

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。

设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,则有以下运算法则:

其中,B≠0;c是一个常数。

相关如下

极限的性质:

1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。

2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。但是,如果一个数列有界,这个数列未必收敛。例如数列 :“1,-1,1,-1,……,(-1)n+1”。

3、保号性:若

(或<0),则对任何m∈(0,a)(a<0时则是 m∈(a,0)),存在N>0,使n>N时有

(相应的xn<m)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
创远信科
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计... 点击进入详情页
本回答由创远信科提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式