以太网帧长
展开全部
以太网中传输的数据帧的长度并不是一个常数,而是一个范围内的,以太网帧长度最大限制(MTU)是1518字节,最小长度是64字节。限制帧的最大长度是为了避免一台设备长时间占用信道,所以在传输过程中一定要有机制强制一个设备停止传输,让出信道的使用。那么为何要限制最小的帧长度呢?一个过小的数据会让以太网不能正常工作吗?
首先,这是一个历史问题,今天确实没有必要限制最小帧长了。早期的以太网使用总线拓扑,网络中多台设备共享一个物理信道。这样就导致了多台设备同时发送信号的时候会发生碰撞,导致多台设备传输失败。然而,经过长时间的演进,特别是交换机的出现,让以太网成为了一个星型拓扑、全双工独享链路的网络。我们使用的网线中有8根铜线,其中使用了4根,备用4根。收发采用的电平信号在两根铜线中传播。收发电路分离的方法使得全双工成为可能。
现在开始回答这个历史上的问题。过短的数据帧确实会带来问题。原因在于电信号是非常快的,过短的帧会导致帧传输时间非常小。以至于在一个局域网的物理环境中,想要给远一点的设备传数据帧的时候。帧在发完之后还有设备没有探测到这个帧,于是也开始使用信道。这是就会发生碰撞。并且,帧的发出者并不知道帧发生了碰撞。因为以太网没有提供可靠传输的机制,帧的发出者在发送完帧后认为帧传输完成,不会再发送这一帧。
解决这个问题就需要让发出者发送一个帧的时间不要太短。这个时间需要考虑最坏的情况。考虑网络中物理距离最远的两台设备,他们中一个发信号,另外一个是最晚得知这个信号的。因此帧传输时间至少要保证帧能传到最远的设备。这个时间是物理距离限制除以光速。如果以太网提升带宽,但是又要保证最小帧长度不变,就不得不牺牲线路的传输距离。因为带宽提高时,发送相同长度的数据帧的时间会缩短。我们又必须保证在这个时间内让网络内所有设备都能接受到这个信号。这就解释了为什么以太网带宽越来越大,但是最长传输距离却越来越小。
仅仅让最远端的设备受到帧的传输时间能保证帧发送完之后不再发生碰撞吗?很可惜,这段时间还不够。再考虑一个最坏的情况,帧在最远点发生了碰撞,但是发出者必须要等待和第一次传输相同的时间才能发现碰撞的产生。因此,最小传输时间必须保证让最远端的设备收到信号,并且让信号发出者收到最远端是否发生了碰撞。这两个情景的最快情况决定了最小传输时间是网络最长距离的两倍处理除以光速。
对于早期的以太网,传输带宽是10Mbps,最小帧是64Bytes。发送完最小帧的时间是
最长传播距离是:
因此,CSMA/CD要求10M以太网的最大物理距离是5736米,超过这个距离,就会使得CSMA/CD出现错误。
这个距离超出了电信号衰减的距离。
以太网的帧开销是18字节,是“目的MAC(6)+源MAC(6)+Type(2)+CRC(4)”。以太网最小帧长为64字节,那么IP报文最小为46字节,而局域网规定IP最大传输单元1500字节,实际上加上以太网帧的18字节,就是1518字节。
讨论以太网的帧长,就不得不先提一下以太网的大名鼎鼎的CSMA/CD协议。
CSMA/CD是英文carrier sense multiple access/collision detected 的缩写,可把它翻成“载波监听多路访问/冲突检测”,或“带有冲突检测的载波侦听多路访问”。
所谓载波监听(carrier sense),意思就是以太网络上的各个工作站在发送数据前,都要监听总线上有没有数据正在传输。若有数据传输 (称总线为忙),则不发送数据,需要等待;若无数据传输(称总线为空),可以立即发送准备好的数据。
所谓多路访问(multiple access),意思就是以太网络上的各个工作站在发送数据时,共同使用一条总线,且发送数据是广播式的。
所谓冲突(collision),意思就是,若以太网上有两个或两个以上工作站同时发送数据,在总线上就会产生信号的冲突;多个工作站都同时发送数据,在总线上就会产生信号的冲突,哪个工作站接收到的数据都辨别不出真正的信息。这种情况称冲突或者碰撞。
为了减少冲突发生的影响,工作站在发送数据过程中还要不停地检测自己发送的数据,检测自己传输过程中有没有其他工作站在发送数据,在传输过程中与其它工作站的数据发生冲突,这就是冲突检测(collision detected)。
当多个工作站均想向以太网发送数据时,如果总线处于忙的状态,大家都等待,也不会有何争议;但是如果总线处于空的状态,而且工作站是依次监听到空状态,那么各个工作站就会陆续向总线发送数据,A工作站发送的数据还未传递到另一个要发送数据的B工作站,那么B工作站仍然认为总线为空的状态,那么B工作站也向总线注入数据;如果还有更多工作站向总线注入数据,原理一样,只是更加复杂而已。
A工作站传递的数据与B工作站传递的数据就会在总线的某处发送冲突,导致此次数据发送失败。那有什么办法可以提前判断,使得工作站不必每次都源源不断的向总线注入数据,其后又检测到冲突,而重新等待,如此反复,既浪费了宝贵的工作站资源与总线资源,又使得数据迟迟不能发送出去。
先了解下碰撞信号,就是连续的01010101或者10101010,十六进制就是55或AA。以太网实现原理是,假设某个工作站检测到冲突发生,那就发送碰撞信号,使冲突更加明显,使得所有工作站均能检测到总线发生了冲突。
我们来看一下,假设A检测到总线是空闲的,开始发数据包,尽力传输,当数据包还没有到达B时,B也监测到总线是空闲的,开始发数据包,这时就会发生冲突。假设B 首先发现发生碰撞,开始发送碰撞信号。
这个碰撞信号会返回到 A,如果碰撞信号到达A时,A还没有发完这个数据包,A就知道这个数据包发生了错误,就会重传这个数据包。但如果碰撞信号会返回到A时,数据包已经发完, 则A不会重传这个数据包。
以太网为什么要设计这样的重传机制。首先,以太网不想采用连接机制,这会降低传输效率,但他又想保证一定的传输效率。因为以太网的重传是微秒级,而传输层的重传,如TCP的重传达到毫秒级,应用层的重传更达到秒级。我们可以看到越底层的重传,速度越快,所以对于链路层发生的错误,以太网必须有重传机制。
要保证以太网的重传,必须保证A收到碰撞信号的时候,数据包没有传完,要实现这一要求,A和B之间的距离很关键,也就是说信号在A和B之间传输的来回时间 必须控制在一定范围之内。
解决方法就是,每个想要发送数据的工作站,检测到总线为空状态,在发送数据之前,先发送一个探测帧,探测帧的发送就圆满的解决了上面的问题。而探测帧的长度既要达到最快速的传递到目的地,又要确保探测帧的传递时间足够使得其他工作站能够监听到。这个探测帧的长度就是以太网规定的最小帧长,就是一个最小最长帧。
由于以太网传递的帧,归根结底还是由比特流组成。上面提到的传输速率,其实就是工作站的发送速率,传输一个帧还是一个个的比特发送出去。即,工作站发送一个帧的第一个比特到达目的地,而此帧的最后一个比特正好发送出去。
C代表光速,也就是20.3cm/ns(每纳秒20.3厘米), C是30W。电子在铜介质(普通铜)中的移动速度是21W/s 。
假设公共总线媒体长度为S,帧在媒体上的传播速度为0.7C(光速),网络的传输率为R(bps),帧长为L(bps),tPHY为某站的物理层时延;
则有:
碰撞槽时间=2S/0.7C+2tPHY
因为Lmin/R=碰撞槽时间
所以:Lmin =(2S/0.7C+2tPHY )×R
Lmin 称为最小帧长度。
碰撞槽时间在以太网中是一个极为重要的参数,有如下特点:
(1)它是检测一次碰撞所需的最长时间。
(2)要求帧长度有个下限。(即最短帧长)
(3)产生碰撞,就会出现帧碎片。
(4)如发生碰撞,要等待一定的时间。t=rT。(T为碰撞槽时间)
假设:A、B两地之间通过一个单向传送带传递物品,传送带的传输速度是C(C代表光速),也就是20.3cm/ns(每纳秒20.3厘米),A点有个人叫Marcia,她要把一车荔枝一串一串的发送给B点的那个人Allen,现在Marcia需要抉择的是:我在传送荔枝给Allen的时候,如果Allen同时也有荔枝传给我,这个时候就会产生冲突,而冲突会把传送中的荔枝撞碎,破碎的荔枝渣会通过传送带反送给我,我很想知道是哪一串荔枝被撞碎了,如何实现?一个办法就是:在我收到荔枝碎片的时候,我仍旧在传着这串荔枝!比如有很多串荔枝,第1串,第2串等,当我发送第3串荔枝的过程中,收了荔枝碎片,那肯定是第3串里先发出的荔枝出现了碰撞,而不是第2串或第1串中的荔枝发生碰撞。
为了实现这一点,假如Marcia到Allen点的距离是2500米(250000厘米),传送带上的荔枝每纳秒20.3厘米,那么一串荔枝中的第一个荔枝到达Allen点的用时就是250000除以20.3=12500纳秒,在加上碎片返回的时间是12500纳秒,等于25000纳秒,这个时间就是一串荔枝在传送带上必须持续的时间。
Marcia高兴的时候,往传送带上放荔枝的时候快,不高兴的时候就慢。高兴的时候每秒可以往传送带上放100Mbit个荔枝,换算一下,也就是说放一个荔枝用10纳秒。不高兴的时候每秒钟只能往传送带上放10Mbit个,也就是说放一个荔枝用100纳秒。
因为一串荔枝必须持续的时间25000纳秒,那么对于不高兴的时候,25000除以100=250个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个10Mbit/s的以太网,最小帧长应该是250bit。但为了确保Marcia在放荔枝的过程中不会被扎到手,放送荔枝间会有一定的延时,所以最小帧长被定义为512bit(64字节)。
因为一串荔枝必须持续的时间25000纳秒,对于高兴的时候,25000除以10=2500个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个100Mbit/s的以太网,最小帧长应该是2500bit。但一个2500bit的帧又太大了,上层来的数据包不可能这么大。所以我们只能缩短A点到B点的距离为250米,一个荔枝在传送带上往返的时间也变成了2500纳秒。这时用2500除以10=250个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个100Mbit/s的以太网,最小帧长应该是250bit,网络最大有效距离是250米。但为了确保Marcia在放荔枝的过程中不会被扎到手,放送荔枝间会有一定的延时,所以帧长被定义为512bit(64字节)。
由此可见,MAC层发送的速度越快,以太网的最大有效距离就越短。但对于1000Mb/s的吉比特以太网,MAC层有两种选择,要么保留CSMA/CD,要么不用它。若保留CSMA/CD协议,必须面临碰撞检测问题,这就要再一次减小网络的最大有效传输距离到25米。当然您可以不缩短网络的距离,而是增加一个帧的程度,就如我们开始分析100Mb/s以太网那样,让一个帧持续足够长的时间。但因为上层来的数据没有这么多,所以就需要在MAC层进行一些无用数据的填充来满足这个要求。
下面我们来估计在最坏情况下,检测到冲突所需的时间
(1)A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为τ,假定A在t时刻开始发送一帧,则这个帧在t+τ时刻到达B,若B在t+τ-ε时刻开始发送一帧,则B在t+τ时就会检测到冲突,并发出阻塞信号。
(2)阻塞信号将在t+2τ时到达A。所以A必须在t+2τ时仍在发送才可以检测到冲突,所以一帧的发送时间必须大于2τ。
(3)按照标准,10Mbps以太网采用中继器时,连接最大长度为2500米,最多经过4个中继器(以太网中使用中继器的5-4-3-2-1原则),因此规定对于10Mbps以太网规定一帧的最小发送时间必须为51.2μs。
(4)51.2μs也就是512位数据在10Mbps以太网速率下的传播时间,常称为512位时。这个时间定义为以太网时隙。512位时=64字节,因此以太网帧的最小长度为512位时=64字节。
802.3-2002标准定了以太网的头结构为DA(6)+SA(6)+Len/Type(2)=14字节。帧校验序列(FCS):4字节,使用CRC计算从目的MAC到数据域这部分内容而得到的校验和。
以太网的帧开销是18字节,是“目的MAC(6)+源MAC(6)+Type(2)+CRC(4)”。以太网最小帧长为64字节,那么IP报文最小为46字节,而局域网规定IP最大传输单元1500字节,实际上加上以太网帧的18字节,就是1518字节。
IEEE定义了这个标准,一个碰撞域内,最远的两台机器之间的round-trip time 要小于512bit time。(来回时间小于512位时,所谓位时就是传输一个比特需要的时间)。这也是我们常说的一个碰撞域的直径。
512个位时,也就是64字节的传输时间,如果以太网数据包大于或等于64个字节,就能保证碰撞信号到达A的时候,数据包还没有传完。
这就是为什么以太网要最小64个字节,同样,在正常的情况下,碰撞信号应该出现在64个字节之内,这是正常的以太网碰撞,如果碰撞信号出现在64个字节之后,叫 late collision。这是不正常的。
CISCO交换机有一种转发方式叫fragment-free,叫无碎片转发,他就是检查64个字节之内有没有错误,有的话不转发,这样就排除了正常的以太网错误包。
首先,这是一个历史问题,今天确实没有必要限制最小帧长了。早期的以太网使用总线拓扑,网络中多台设备共享一个物理信道。这样就导致了多台设备同时发送信号的时候会发生碰撞,导致多台设备传输失败。然而,经过长时间的演进,特别是交换机的出现,让以太网成为了一个星型拓扑、全双工独享链路的网络。我们使用的网线中有8根铜线,其中使用了4根,备用4根。收发采用的电平信号在两根铜线中传播。收发电路分离的方法使得全双工成为可能。
现在开始回答这个历史上的问题。过短的数据帧确实会带来问题。原因在于电信号是非常快的,过短的帧会导致帧传输时间非常小。以至于在一个局域网的物理环境中,想要给远一点的设备传数据帧的时候。帧在发完之后还有设备没有探测到这个帧,于是也开始使用信道。这是就会发生碰撞。并且,帧的发出者并不知道帧发生了碰撞。因为以太网没有提供可靠传输的机制,帧的发出者在发送完帧后认为帧传输完成,不会再发送这一帧。
解决这个问题就需要让发出者发送一个帧的时间不要太短。这个时间需要考虑最坏的情况。考虑网络中物理距离最远的两台设备,他们中一个发信号,另外一个是最晚得知这个信号的。因此帧传输时间至少要保证帧能传到最远的设备。这个时间是物理距离限制除以光速。如果以太网提升带宽,但是又要保证最小帧长度不变,就不得不牺牲线路的传输距离。因为带宽提高时,发送相同长度的数据帧的时间会缩短。我们又必须保证在这个时间内让网络内所有设备都能接受到这个信号。这就解释了为什么以太网带宽越来越大,但是最长传输距离却越来越小。
仅仅让最远端的设备受到帧的传输时间能保证帧发送完之后不再发生碰撞吗?很可惜,这段时间还不够。再考虑一个最坏的情况,帧在最远点发生了碰撞,但是发出者必须要等待和第一次传输相同的时间才能发现碰撞的产生。因此,最小传输时间必须保证让最远端的设备收到信号,并且让信号发出者收到最远端是否发生了碰撞。这两个情景的最快情况决定了最小传输时间是网络最长距离的两倍处理除以光速。
对于早期的以太网,传输带宽是10Mbps,最小帧是64Bytes。发送完最小帧的时间是
最长传播距离是:
因此,CSMA/CD要求10M以太网的最大物理距离是5736米,超过这个距离,就会使得CSMA/CD出现错误。
这个距离超出了电信号衰减的距离。
以太网的帧开销是18字节,是“目的MAC(6)+源MAC(6)+Type(2)+CRC(4)”。以太网最小帧长为64字节,那么IP报文最小为46字节,而局域网规定IP最大传输单元1500字节,实际上加上以太网帧的18字节,就是1518字节。
讨论以太网的帧长,就不得不先提一下以太网的大名鼎鼎的CSMA/CD协议。
CSMA/CD是英文carrier sense multiple access/collision detected 的缩写,可把它翻成“载波监听多路访问/冲突检测”,或“带有冲突检测的载波侦听多路访问”。
所谓载波监听(carrier sense),意思就是以太网络上的各个工作站在发送数据前,都要监听总线上有没有数据正在传输。若有数据传输 (称总线为忙),则不发送数据,需要等待;若无数据传输(称总线为空),可以立即发送准备好的数据。
所谓多路访问(multiple access),意思就是以太网络上的各个工作站在发送数据时,共同使用一条总线,且发送数据是广播式的。
所谓冲突(collision),意思就是,若以太网上有两个或两个以上工作站同时发送数据,在总线上就会产生信号的冲突;多个工作站都同时发送数据,在总线上就会产生信号的冲突,哪个工作站接收到的数据都辨别不出真正的信息。这种情况称冲突或者碰撞。
为了减少冲突发生的影响,工作站在发送数据过程中还要不停地检测自己发送的数据,检测自己传输过程中有没有其他工作站在发送数据,在传输过程中与其它工作站的数据发生冲突,这就是冲突检测(collision detected)。
当多个工作站均想向以太网发送数据时,如果总线处于忙的状态,大家都等待,也不会有何争议;但是如果总线处于空的状态,而且工作站是依次监听到空状态,那么各个工作站就会陆续向总线发送数据,A工作站发送的数据还未传递到另一个要发送数据的B工作站,那么B工作站仍然认为总线为空的状态,那么B工作站也向总线注入数据;如果还有更多工作站向总线注入数据,原理一样,只是更加复杂而已。
A工作站传递的数据与B工作站传递的数据就会在总线的某处发送冲突,导致此次数据发送失败。那有什么办法可以提前判断,使得工作站不必每次都源源不断的向总线注入数据,其后又检测到冲突,而重新等待,如此反复,既浪费了宝贵的工作站资源与总线资源,又使得数据迟迟不能发送出去。
先了解下碰撞信号,就是连续的01010101或者10101010,十六进制就是55或AA。以太网实现原理是,假设某个工作站检测到冲突发生,那就发送碰撞信号,使冲突更加明显,使得所有工作站均能检测到总线发生了冲突。
我们来看一下,假设A检测到总线是空闲的,开始发数据包,尽力传输,当数据包还没有到达B时,B也监测到总线是空闲的,开始发数据包,这时就会发生冲突。假设B 首先发现发生碰撞,开始发送碰撞信号。
这个碰撞信号会返回到 A,如果碰撞信号到达A时,A还没有发完这个数据包,A就知道这个数据包发生了错误,就会重传这个数据包。但如果碰撞信号会返回到A时,数据包已经发完, 则A不会重传这个数据包。
以太网为什么要设计这样的重传机制。首先,以太网不想采用连接机制,这会降低传输效率,但他又想保证一定的传输效率。因为以太网的重传是微秒级,而传输层的重传,如TCP的重传达到毫秒级,应用层的重传更达到秒级。我们可以看到越底层的重传,速度越快,所以对于链路层发生的错误,以太网必须有重传机制。
要保证以太网的重传,必须保证A收到碰撞信号的时候,数据包没有传完,要实现这一要求,A和B之间的距离很关键,也就是说信号在A和B之间传输的来回时间 必须控制在一定范围之内。
解决方法就是,每个想要发送数据的工作站,检测到总线为空状态,在发送数据之前,先发送一个探测帧,探测帧的发送就圆满的解决了上面的问题。而探测帧的长度既要达到最快速的传递到目的地,又要确保探测帧的传递时间足够使得其他工作站能够监听到。这个探测帧的长度就是以太网规定的最小帧长,就是一个最小最长帧。
由于以太网传递的帧,归根结底还是由比特流组成。上面提到的传输速率,其实就是工作站的发送速率,传输一个帧还是一个个的比特发送出去。即,工作站发送一个帧的第一个比特到达目的地,而此帧的最后一个比特正好发送出去。
C代表光速,也就是20.3cm/ns(每纳秒20.3厘米), C是30W。电子在铜介质(普通铜)中的移动速度是21W/s 。
假设公共总线媒体长度为S,帧在媒体上的传播速度为0.7C(光速),网络的传输率为R(bps),帧长为L(bps),tPHY为某站的物理层时延;
则有:
碰撞槽时间=2S/0.7C+2tPHY
因为Lmin/R=碰撞槽时间
所以:Lmin =(2S/0.7C+2tPHY )×R
Lmin 称为最小帧长度。
碰撞槽时间在以太网中是一个极为重要的参数,有如下特点:
(1)它是检测一次碰撞所需的最长时间。
(2)要求帧长度有个下限。(即最短帧长)
(3)产生碰撞,就会出现帧碎片。
(4)如发生碰撞,要等待一定的时间。t=rT。(T为碰撞槽时间)
假设:A、B两地之间通过一个单向传送带传递物品,传送带的传输速度是C(C代表光速),也就是20.3cm/ns(每纳秒20.3厘米),A点有个人叫Marcia,她要把一车荔枝一串一串的发送给B点的那个人Allen,现在Marcia需要抉择的是:我在传送荔枝给Allen的时候,如果Allen同时也有荔枝传给我,这个时候就会产生冲突,而冲突会把传送中的荔枝撞碎,破碎的荔枝渣会通过传送带反送给我,我很想知道是哪一串荔枝被撞碎了,如何实现?一个办法就是:在我收到荔枝碎片的时候,我仍旧在传着这串荔枝!比如有很多串荔枝,第1串,第2串等,当我发送第3串荔枝的过程中,收了荔枝碎片,那肯定是第3串里先发出的荔枝出现了碰撞,而不是第2串或第1串中的荔枝发生碰撞。
为了实现这一点,假如Marcia到Allen点的距离是2500米(250000厘米),传送带上的荔枝每纳秒20.3厘米,那么一串荔枝中的第一个荔枝到达Allen点的用时就是250000除以20.3=12500纳秒,在加上碎片返回的时间是12500纳秒,等于25000纳秒,这个时间就是一串荔枝在传送带上必须持续的时间。
Marcia高兴的时候,往传送带上放荔枝的时候快,不高兴的时候就慢。高兴的时候每秒可以往传送带上放100Mbit个荔枝,换算一下,也就是说放一个荔枝用10纳秒。不高兴的时候每秒钟只能往传送带上放10Mbit个,也就是说放一个荔枝用100纳秒。
因为一串荔枝必须持续的时间25000纳秒,那么对于不高兴的时候,25000除以100=250个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个10Mbit/s的以太网,最小帧长应该是250bit。但为了确保Marcia在放荔枝的过程中不会被扎到手,放送荔枝间会有一定的延时,所以最小帧长被定义为512bit(64字节)。
因为一串荔枝必须持续的时间25000纳秒,对于高兴的时候,25000除以10=2500个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个100Mbit/s的以太网,最小帧长应该是2500bit。但一个2500bit的帧又太大了,上层来的数据包不可能这么大。所以我们只能缩短A点到B点的距离为250米,一个荔枝在传送带上往返的时间也变成了2500纳秒。这时用2500除以10=250个荔枝,这个结果就是一串荔枝的数量。所以,理论上一个100Mbit/s的以太网,最小帧长应该是250bit,网络最大有效距离是250米。但为了确保Marcia在放荔枝的过程中不会被扎到手,放送荔枝间会有一定的延时,所以帧长被定义为512bit(64字节)。
由此可见,MAC层发送的速度越快,以太网的最大有效距离就越短。但对于1000Mb/s的吉比特以太网,MAC层有两种选择,要么保留CSMA/CD,要么不用它。若保留CSMA/CD协议,必须面临碰撞检测问题,这就要再一次减小网络的最大有效传输距离到25米。当然您可以不缩短网络的距离,而是增加一个帧的程度,就如我们开始分析100Mb/s以太网那样,让一个帧持续足够长的时间。但因为上层来的数据没有这么多,所以就需要在MAC层进行一些无用数据的填充来满足这个要求。
下面我们来估计在最坏情况下,检测到冲突所需的时间
(1)A和B是网上相距最远的两个主机,设信号在A和B之间传播时延为τ,假定A在t时刻开始发送一帧,则这个帧在t+τ时刻到达B,若B在t+τ-ε时刻开始发送一帧,则B在t+τ时就会检测到冲突,并发出阻塞信号。
(2)阻塞信号将在t+2τ时到达A。所以A必须在t+2τ时仍在发送才可以检测到冲突,所以一帧的发送时间必须大于2τ。
(3)按照标准,10Mbps以太网采用中继器时,连接最大长度为2500米,最多经过4个中继器(以太网中使用中继器的5-4-3-2-1原则),因此规定对于10Mbps以太网规定一帧的最小发送时间必须为51.2μs。
(4)51.2μs也就是512位数据在10Mbps以太网速率下的传播时间,常称为512位时。这个时间定义为以太网时隙。512位时=64字节,因此以太网帧的最小长度为512位时=64字节。
802.3-2002标准定了以太网的头结构为DA(6)+SA(6)+Len/Type(2)=14字节。帧校验序列(FCS):4字节,使用CRC计算从目的MAC到数据域这部分内容而得到的校验和。
以太网的帧开销是18字节,是“目的MAC(6)+源MAC(6)+Type(2)+CRC(4)”。以太网最小帧长为64字节,那么IP报文最小为46字节,而局域网规定IP最大传输单元1500字节,实际上加上以太网帧的18字节,就是1518字节。
IEEE定义了这个标准,一个碰撞域内,最远的两台机器之间的round-trip time 要小于512bit time。(来回时间小于512位时,所谓位时就是传输一个比特需要的时间)。这也是我们常说的一个碰撞域的直径。
512个位时,也就是64字节的传输时间,如果以太网数据包大于或等于64个字节,就能保证碰撞信号到达A的时候,数据包还没有传完。
这就是为什么以太网要最小64个字节,同样,在正常的情况下,碰撞信号应该出现在64个字节之内,这是正常的以太网碰撞,如果碰撞信号出现在64个字节之后,叫 late collision。这是不正常的。
CISCO交换机有一种转发方式叫fragment-free,叫无碎片转发,他就是检查64个字节之内有没有错误,有的话不转发,这样就排除了正常的以太网错误包。
高骏(北京)科技有限公司
2020-04-29 广告
2020-04-29 广告
公网传输编解码建议选择高骏(北京)科技有限公司,价格合理,品质高服务好。高骏(北京)科技有限公司简称高骏科技。Cogent(高骏科技)创立于 2011年,始终致力于核心技术和创新性产品的自主研发,目前已成为国际知名的无线视音频传输与通信产品...
点击进入详情页
本回答由高骏(北京)科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询