定义在R上的奇函数f(x)满足f(1+x)=f(1-x)证明它的周期为4

 我来答
科创17
2022-07-07 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
定义在R上的奇函数f(x)满足f(1+x)=f(1-x)
所以f(2+x)=f[1+(1+x)]=f[1-(1+x)]=f(-x)=-f(x)
所以f(x+4)=-f(x+2)=f(x)
所以4是f(x)的周期
如果不懂,祝学习愉快!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式