分布式计算的概念及框架

 我来答
温屿17
2022-07-18 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:93.2万
展开全部
Hello各位old铁,卑微小张在线分享技术观念,以下是今日份读解。

关于分布式计算、并行计算的理解

一提到分布式计算就不得不区分一下它与并行计算的相关概念。

……之前一直被问到并行计算和分布式计算有什么区别,当时脑子里就在想What……

这不是一个东西?一直分布式并行计算叫着。之后有过相关的学习以及查阅资料,发现二者确实存在一定的联系,但其实还真不是一个东西。

并行计算 ,相对于串行计算而言,一般可分为时间并行和空间并行。时间并行可以看做是流水线操作,类似CPU执行的流水线,而空间并行则是目前大多数研究的问题,例如一台机器拥有多个处理器,在多个CPU上执行计算,例如MPI技术,通常可分为数据并行和任务并行。

分布式计算 ,则是相对单机计算而言的,利用多台机器,通过网络连接和消息传递协调完成计算。把需要进行大量计算的工程数据分区成小块,由多台计算机分别计算,再上传运算结果后,将结果统一合并得出最终结果。

总而言之现在人们更比较关心的是二者之间的重叠部分,例如:Hadoop。Spark等等。

关于分布式计算框架

Hadoop 是分布式计算框架的基础,其中的HDFS提供文件存储,Yarn进行资源管理。在这上面可以运行MapReduce、Spark、Tez等计算框架。

MapReduce :是一种离线计算框架,将一个算法抽象成Map和Reduce两个阶段进行处理,非常适合数据密集型计算。

Spark :Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。

Storm :MapReduce也不适合进行流式计算、实时分析,比如广告点击计算等。Storm是一个免费开源、分布式、高容错的实时计算系统。Storm令持续不断的流计算变得容易,弥补了Hadoop批处理所不能满足的实时要求。Storm经常用于在实时分析、在线机器学习、持续计算、分布式远程调用和ETL等领域。

Tez : 是基于Hadoop Yarn之上的DAG(有向无环图,Directed Acyclic Graph)计算框架。它把Map/Reduce过程拆分成若干个子过程,同时可以把多个Map/Reduce任务组合成一个较大的DAG任务,减少了Map/Reduce之间的文件存储。同时合理组合其子过程,也可以减少任务的运行时间。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京磐安云创科技有限公司_
2023-02-01 广告
价格只是购买产品或服务过程中的一项指标,如果单纯只比较价格,其实考虑并不是那么周到。价格、质量、服务、口碑、是否合适自己的情况等都需要一起考虑。以上回答如果还觉得不够详细,可以来咨询下北京磐安公司。北京磐安公司是一家专业从事高新软件的技术公... 点击进入详情页
本回答由北京磐安云创科技有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式