求周期及最大值最小值 y=sin(x-π/3)cos x
1个回答
展开全部
y=sin(x-π/3)cosx
=[sinxcos(π/3)-cosxsin(π/3)]cosx
=[(1/2)*sinx-(√3/2)*cosx]cosx
=(1/2)*sinxcosx-(√3/2)*(cosx)^2
=(1/4)sin2x-(√3/2)*(1+cos2x)/2
=(1/4)sin2x-(√3/4)cos2x-√3/4
=√(1/16+3/16)sin(2x-π/3)-√3/4
=(1/2)sin(2x-π/3)-√3/4
所以T=2π/2=π
最大值是1/2-√3/4=(2-√3)/4,最小值是-1/2-√3/4=(-2-√3)/4
=[sinxcos(π/3)-cosxsin(π/3)]cosx
=[(1/2)*sinx-(√3/2)*cosx]cosx
=(1/2)*sinxcosx-(√3/2)*(cosx)^2
=(1/4)sin2x-(√3/2)*(1+cos2x)/2
=(1/4)sin2x-(√3/4)cos2x-√3/4
=√(1/16+3/16)sin(2x-π/3)-√3/4
=(1/2)sin(2x-π/3)-√3/4
所以T=2π/2=π
最大值是1/2-√3/4=(2-√3)/4,最小值是-1/2-√3/4=(-2-√3)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询