不定积分的计算公式
∫(sinx)^4dx
=∫[(1/2)(1-cos2x]^2dx
=(1/4)∫[1-2cos2x+(cos2x)^2]dx
=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx
=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx
=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x
=(3/8)x-(1/4)sin2x+(1/32)sin4x+C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
扩展资料:
把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。
设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
参考资料来源:百度百科——不定积分
2021-01-25 广告
广告 您可能关注的内容 |