已知x+y+z,xy+yz+zx,xyz都是整数,求证:x^n+y^n+z^n为整数(n为任意正整数)

 我来答
舒适还明净的海鸥i
2022-08-18 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.4万
展开全部
由韦达定理x,y,z是方程t^3-(x+y+z)t^2+(xy+yz+xz)t-xyz=0的三个根带入x并将两边乘以x^n得 x^(n+3)-(x+y+z)x^(n+2)+(xy+yz+zx)x^(n+1)-xyzx^n=0对于y和z可以得到同样的式子,将三式相加合并同次项,利用已知x+y+z,xy+yz...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式