不定积分公式怎么来的

 我来答
教育小百科达人
2022-12-11 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

∫xlnxdx=(1/2)x²lnx-(1/4)x²+C。(C为积分常数)

解答过程如下:

∫xlnxdx

=(1/2)∫lnxd(x²)

=(1/2)x²lnx-(1/2)∫x²*(1/x)dx

=(1/2)x²lnx-(1/2)∫xdx

=(1/2)x²lnx-(1/4)x²+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

积分都满足一些基本的性质。在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。

函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。对于勒贝格可积的函数,某个测度为0的集合上的函数值改变,不会影响它的积分值。

参考资料来源:百度百科——不定积分

吉禄学阁

2023-05-21 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62493

向TA提问 私信TA
展开全部

 例如以下不定积分的计算。

  • 根式换元法:

  • 设√(x+2)=t,则x=(t^2-2),代入得:

    ∫x√(x+2)dx

    =∫t*(t^2-2)d(t^2-2),

    =2∫t^2*(t^2-2)dt,

    =2∫(t^4-2t^2)dt,

    =2/5*t^5-4/3*t^3+C,

    =2/5*(x+2)^(5/2)-4/3*(x+2)^(3/2)+C,

    请点击输入图片描述

  • 凑分法不定积分:

  • ∫x√(2x^2+1)^3dx

    =(1/2)∫√(2x^2+1)^3dx^2

    =(1/4)∫√(2x^2+1)^3d2x^2

    =(1/4)∫(2x^2+1)^(3/2)d(2x^2+1)

    =(1/4)*(2/5)* (2x^2+1)^(5/2)+C.

    =(1/10)* (2x^2+1)^(5/2)+C.

    请点击输入图片描述

  • 分部积分法计算不定积分:

  • ∫x^4 (lnx)^2dx

    =(1/5)∫(lnx)^2dx^a11,以下第一次使用分部积分法,

    =(1/5) (lnx)^2*x^5-(1/5)∫x^5d(lnx)^2

    =(1/5) (lnx)^2*x^5-(2/5)∫x^5*lnx*(1/x)dx

    =(1/5) (lnx)^2*x^5-(2/5)∫x^4*lnxdx

    =(1/5) (lnx)^2*x^5-(2/25)∫lnxdx^5,

    请点击输入图片描述

    以下第二次使用分部积分法,

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5dlnx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^5*1/xdx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/25)∫x^adx

    =(1/5) (lnx)^2*x^5-(2/25)lnx*x^5+(2/125)x^5+c

    =x^5 [(1/5) (lnx)^2-(2/25)lnx+(2/125)]+c

    =(1/125)x^5 [25 (lnx)^2-10lnx+2]+c.

    请点击输入图片描述

  • 凑分及分部积分法

  • ∫(10x^2+x+1)lnxdx

    =∫lnxd(10x^3/3+x^2/2+x),对幂函数部分进行凑分,

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dlnx

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^3/3+x^2/2+x)dx/x

    =lnx*(10x^3/3+x^2/2+x)-∫(10x^2/3+x/2+1)dx

    =lnx*(10x^3/3+x^2/2+x)-(10x^3/9+x^2/4+x)+C。

    请点击输入图片描述

  • 不定积分概念

  • 设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

    请点击输入图片描述

    其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式