如何证明根号2+根号3-根号5是无理数
展开全部
设a=√2+√3+√5>0是有理数
则a-(√2+√3)=√5 两边平方
[a-(√2+√3)]^2=5 是有理数
所以a^2+2+3-2a(√2+√3)+2√6=5 1)
==》 -a(√2+√3)+√6 为有理数
平方得到 a^2(2+3+2√6)+6-2a√3-3a√2为有理数 2)
==》1)-2)得到
(2-2a^2)√6+a√2为有理数
平方 ==> a(1-a^2)√3为有理数 ==>a=1,显然矛盾
求采纳为满意回答.
则a-(√2+√3)=√5 两边平方
[a-(√2+√3)]^2=5 是有理数
所以a^2+2+3-2a(√2+√3)+2√6=5 1)
==》 -a(√2+√3)+√6 为有理数
平方得到 a^2(2+3+2√6)+6-2a√3-3a√2为有理数 2)
==》1)-2)得到
(2-2a^2)√6+a√2为有理数
平方 ==> a(1-a^2)√3为有理数 ==>a=1,显然矛盾
求采纳为满意回答.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询