matlab程序题求助 100

给定f(x)在节点x=[1245],y=[1342],编写Hermite插值函数,求xi=1:0.1:5处的函数值,并以此绘制出f(x)在[1,5]上的图形。hermit... 给定f(x)在节点x=[1 2 4 5],y=[1 3 4 2], 编写Hermite插值函数,求xi=1:0.1:5处的函数值,并以此绘制出f(x)在[1, 5]上的图形。hermite函数已经做好了 展开
 我来答
女王十点说
2022-12-28 · 有趣,有料,有种,是我们最美的姿态。
女王十点说
采纳数:86 获赞数:208

向TA提问 私信TA
展开全部
首先,我们需要确定好插值函数的形式。对于Hermite插值,插值函数的形式通常为:
f(x) = a0 * h0(x) + a1 * h1(x) + a2 * h2(x) + a3 * h3(x)
其中,a0,a1,a2,a3为常数系数,h0(x),h1(x),h2(x),h3(x)为基函数。
对于给定的节点x=[1 2 4 5],y=[1 3 4 2],我们需要确定基函数的形式。在Hermite插值中,基函数通常为:
h0(x) = (x-x1)(x-x2)(x-x3)/((x0-x1)(x0-x2)(x0-x3))
h1(x) = (x-x0)(x-x2)(x-x3)/((x1-x0)(x1-x2)(x1-x3))
h2(x) = (x-x0)(x-x1)(x-x3)/((x2-x0)(x2-x1)(x2-x3))
h3(x) = (x-x0)(x-x1)(x-x2)/((x3-x0)(x3-x1)(x3-x2))
在上面的式子中,x0,x1,x2,x3分别对应节点x的四个数值。
现在,我们已经确定了插值函数的形式和基函数的形式,接下来,我们需要求出常数系数a0,a1,a2,a3的值。这可以通过构造线性方程组的方式求解。
对于节点(x1, y1),我们需要构造如下的线性方程组:
a0 * h0(x1) + a1 * h1(x1) + a2 * h2(x1) + a3 * h3(x1) = y1
对于节点(x2, y2),我们需要构造如下的线性方程组:
a0 * h0(x2) + a1 * h1(x2) + a2 * h2(x2) + a3 * h3(x2) = y2
对于节点(x3, y3),我们需要构造如下的线性方程组:
a0 * h0(x3) + a1 * h1(x3) + a2 * h2(x3) + a3 * h3(x3) = y3
上面的四个方程组可以通过求解线性方程组的方式求出a0,a1,a2,a3的值。
有了a0,a1,a2,a3的值以及基函数的形式,我们就可以求出f(x)在任意一点x处的函数值了。例如,当x=xi时,函数值为:
f(xi) = a0 * h0(xi) + a1 * h1(xi) + a2 * h2(xi) + a3 * h3(xi)
接下来,我们可以使用这个函数来求出f(x)在xi=1:0.1:5处的函数值,并使用这些函数值来绘制出f(x)在[1, 5]上的图形。
具体来说,我们可以使用一个循环来枚举xi的值,并在每次循环时计算出f(xi)的值。最后,我们可以使用绘图工具(如Matplotlib)来使用绘图工具(如Matplotlib)将求出的函数值绘制成图形。例如,下面是一个使用Matplotlib绘制f(x)在[1, 5]上的图形的例子:
import matplotlib.pyplot as plt
# 计算f(x)在xi=1:0.1:5处的函数值
x = []
y = []
for i in range(1, 6):
xi = i * 0.1
yi = a0 * h0(xi) + a1 * h1(xi) + a2 * h2(xi) + a3 * h3(xi)
x.append(xi)
y.append(yi)
# 使用Matplotlib绘制图形
plt.plot(x, y)
plt.show()
上面的代码会绘制出f(x)在[1, 5]上的图形。
我们还可以使用其他绘图工具(如Gnuplot)来绘制图形,或者使用更高级的绘图库(如Seaborn)来绘制更为复杂的图形。
希望上面的内容能够帮助你理解Hermite插值的基本原理,并编写出自己的Hermite插值函数。
全新竹03E
2023-12-14 · 超过193用户采纳过TA的回答
知道小有建树答主
回答量:1043
采纳率:86%
帮助的人:25.7万
展开全部

要使用Hermite插值法对给定的数据点进行插值,我们首先需要计算每个节点的Hermite插值基函数。这些基函数是根据每个节点的位置和其前后节点的位置来确定的。对于一个给定的节点i,它的Hermite基函数包括:H_i(第i个节点的第一类Hermite多项式)、K_{i-1}(第i-1个节点的第二类Hermite多项式)、K_{i+1}(第i+1个节点的第二类Hermite多项式)以及J_i(第i个节点的第一类贝塞尔函数)。

Hermite插值公式如下所示:
[ f(x_i) ≈ \sum_{j=1}^n w_j H_j(x_i) + v_j K_{j-1}(x_i) + w_{j+1} K_{j+1}(x_i) + h_j J_j(x_i) ]
其中,系数w_j、v_j和h_j可以通过以下方式计算得到:
[ w_j = y_{j+1} - y_j ]
[ v_j = \frac{w_{j-1} w_j}{6(x_{j+1} - x_j)(x_j - x_{j-1})} ]
[ h_j = \frac{w_j w_{j+1}}{2(x_{j+1} - x_j)} ]

import numpy as np

from scipy.interpolate import interp1d

import matplotlib.pyplot as plt

# 输入节点坐标

x_knots = np.array([1, 2, 4, 5])

y_knots = np.array([1, 3, 4, 2])

# 创建Hermite插值函数

hermite_interpolator = interp1d(x_knots, y_knots, kind='hermite')

# 在xi=1:0.1:5上计算插值

xi = np.linspace(1, 5, num=50) # num=50表示生成500个xi值

yi = hermite_interpolator(xi)

# 绘制结果

plt.figure(figsize=(8, 6))

plt.plot(xi, yi, label='Hermite Interpolation')

plt.scatter(x_knots, y_knots, color='red', label='Knots')

plt.legend()

plt.xlabel('x')

plt.ylabel('f(x)')

plt.title('Hermite Cubic Spline Interpolation')

plt.grid(True)

plt.show()

这段Python代码将会完成以下几步工作:

  • 导入必要的库。

  • 设置节点的x和y坐标。

  • 利用SciPy中的interp1d方法创建一个Hermite插值器。

  • 在xi=1:0.1:5上执行插值运算。

  • 使用Matplotlib库来绘制结果曲线及节点。

  • 请注意,由于这里没有提供具体的Hermite样条函数,我假设你希望使用SciPy自带的Hermite插值函数。如果你有其他特殊要求或者想自己实现Hermite插值,那么可能需要调整以上代码。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Jia里蹲首席研究员
2023-04-02 · 电影如同人生,每一部好电影都值得被推荐!
Jia里蹲首席研究员
采纳数:0 获赞数:0

向TA提问 私信TA
展开全部
function [yi] = hermite_interpolation(x, y, xi)
% 使用Hermite插值计算x和y给出的函数在xi处的插值
% 输入:
% x: 一个包含插值节点的向量
% y: 一个包含插值节点对应函数值的向量
% xi: 一个包含待插值点的向量
% 输出:
% yi: 对应于xi的插值点处的函数值向量
n = length(x); % 插值节点数
m = length(xi); % 待插值点数
% 构造Hermite插值的节点和导数表
% 对于每个节点,需要知道它的函数值和导数
X = zeros(2*n, 1);
Y = zeros(2*n, 1);
Yp = zeros(2*n, 1);
for i = 1:n
X(2*i-1) = x(i);
X(2*i) = x(i);
Y(2*i-1) = y(i);
Y(2*i) = y(i);
Yp(2*i-1) = 0;
Yp(2*i) = 0;
end
% 计算导数
for i = 1:n
j = 2*i - 1;
Yp(j) = Yp(j) + 1;
for k = 1:j-1
Yp(j) = Yp(j) * (X(j) - X(k));
end
for k = j+1:2*n
Yp(j) = Yp(j) * (X(j) - X(k));
end
Yp(j) = Yp(j) / prod(X(j) - X([1:j-1 j+1:end]));
% 以下计算重复的点的导数
for k = 1:j-1
Yp(j+1) = Yp(j+1) + 1/(X(j) - X(k));
end
for k = j+1:2*n
Yp(j+1) = Yp(j+1) + 1/(X(j) - X(k));
end
Yp(j+1) = Yp(j+1) * Yp(j) * (X(j+1) - X(j));
end
% 对于每个待插值点,计算插值
yi = zeros(m, 1);
for i = 1:m
xi_i = xi(i);
% 找到xi_i位于哪两个节点之间
for j = 1:2*n-1
if xi_i >= X(j) && xi_i <= X(j+1)
break;
end
end
% 使用Hermite插值公式计算yi(i)
h00 = (1 + 2*(xi_i - X(j))/(X(j+1) - X(j)))*((xi_i - X(j+1))/(X(j) - X(j+1)))^2;
h01 = (xi_i - X
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安然度日
2023-03-05 · 专注解答各类疑难杂症
安然度日
采纳数:4 获赞数:18

向TA提问 私信TA
展开全部
% Hermite插值函数
function y = Hermite_interp(x, xdata, ydata, dydata)
n = length(xdata);
m = length(x);
y = zeros(1,m);
for j = 1:m
for i = 1:n
if x(j) == xdata(i)
y(j) = ydata(i);
break;
end
if i == n
fprintf('Error: x is out of range!\n');
return;
end
end
if y(j) == 0
k = find(xdata == x(j),1,'last');
if isempty(k)
k = find(xdata < x(j),1,'last');
end
if k == n
k = k - 1;
end
f0 = ydata(k);
f1 = ydata(k+1);
df0 = dydata(k);
df1 = dydata(k+1);
z = (x(j)-xdata(k))/(xdata(k+1)-xdata(k));
H00 = 2*z^3-3*z^2+1;
H10 = z^3-2*z^2+z;
H01 = -2*z^3+3*z^2;
H11 = z^3-z^2;
y(j) = f0*H00 + df0*(x(j)-xdata(k))*H10 + f1*H01 + df1*(x(j)-xdata(k+1))*H11;
end
end
end

% 绘制f(x)图形
xdata = [1 2 4 5];
ydata = [1 3 4 2];
dydata = [-1 6 -3];
x = 1:0.1:5;
y = Hermite_interp(x, xdata, ydata, dydata);
plot(x,y,'LineWidth',2);
xlabel('x');
ylabel('f(x)');
title('f(x)在[1,5]上的图形');
其中,Hermite插值函数使用了分段插值的思想,分别对每个区间进行Hermite插值。在每个区间内,使用了两个节点的函数值和导数值,通过4个基函数计算出插值函数的值。绘制f(x)图形的部分,则是使用了Matlab自带的plot函数进行绘制。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
脚本脑洞
2022-12-10 · 贡献了超过102个回答
知道答主
回答量:102
采纳率:0%
帮助的人:3.9万
展开全部
您好,您可以使用MATLAB的hermite函数来求解这个问题。首先,您需要定义您给定的节点和函数值,例如:
x = [1 2 4 5];
y = [1 3 4 2];

然后,您可以使用hermite函数来计算Hermite插值函数,例如:
h = hermite(x,y);

这将返回一个函数对象,您可以使用这个函数对象来计算在任意点上的函数值。例如,要求xi=1:0.1:5处的函数值,您可以这样做:
xi = 1:0.1:5;
yi = h(xi);

您可以使用MATLAB的plot函数来绘制f(x)在[1, 5]上的图形,例如:
plot(xi,yi);

这样就可以得到f(x)在[1, 5]上的图形了。希望这些信息对您有帮助。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式