求二阶导数x=cost+tsint,y=sint-tcost
2个回答
展开全部
x=cost+tsint
dx/dt = -sint + tcost +sint = tcost
y=sint-tcost
dy/dt = cost +tsint - cost = tsint
dy/dx = (dy/dt)/(dx/dt) = tant
d/dt (dy/dx) = (sect)^2
d^2y/dx^2
=d/dt (dy/dx)/ (dx/dt)
=(sect)^2 /(tcost)
=1/[t(cost)^3 ]
dx/dt = -sint + tcost +sint = tcost
y=sint-tcost
dy/dt = cost +tsint - cost = tsint
dy/dx = (dy/dt)/(dx/dt) = tant
d/dt (dy/dx) = (sect)^2
d^2y/dx^2
=d/dt (dy/dx)/ (dx/dt)
=(sect)^2 /(tcost)
=1/[t(cost)^3 ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询