有关角的数学小知识

 我来答
新科技17
2022-11-23 · TA获得超过5842个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:72.4万
展开全部
1.关于角的小知识(数学)
线和角

(1)线

* 直线 直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

* 射线 射线只有一个端点;长度无限。

* 线段 线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

* 平行线 在同一平面内,不相交的两条直线叫做平行线。

两条平行线之间的垂线长度都相等。

* 垂线 两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角 (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类

锐角:小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。

周角:角的一边旋转一周,与另一边重合。周角是360°。
2.关于角的小知识(数学)
线和角 (1)线 * 直线 直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

* 射线 射线只有一个端点;长度无限。 * 线段 线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

* 平行线 在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。

* 垂线 两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。

(2)角 (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的分类 锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。 平角:角的两边成一条直线,这时所组成的角叫做平角。

平角180°。 周角:角的一边旋转一周,与另一边重合。

周角是360°。
3.求高中数学几个有关角的知识
1,定义:是两向量首首相连所夹的角;范围0~180;公式cosα=(X1X2+Y1Y2)/(根号(X1^2+X2^2)(X2^2+Y2^2))

2,定义:把两条异面直线分别平移,使之在某处相交得到两条相交直线,我们用这两条直线所夹的锐角或直角来反映异面直线的相对倾斜程度,并称之为异面直线所成的角;范围:0~90;求角方法:把直线平移成相交直线再求

3,定义:平面的一条斜线和它在这个平面 *** 影所成的锐角或直角;范围0~90;求线面角过斜线上任意一点B作平面的垂线,连接垂足A斜足O,角AOB即所求。

4,定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角(这条直线叫做二面角的棱,每个半平面叫做二面角的面);范围0~180;作二面角的平面角的常用方法有六种: 1.定义法 2.垂面法 3.射影定理 4.三垂线定理 5.向量法 6.转化法 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。 由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得 也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α 二面角的通常求法: (1)由定义作出二面角的平面角; (2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角; (3)利用三垂线定理(逆定理)作出二面角的平面角; (4)空间坐标求二面角的大小。 其中,(1)、(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。 求二面角大小的基本步骤 (1)作出二面角的平面角: A:利用等腰(含等边)三角形底边的中点作平面角; B:利用面的垂线(三垂线定理或其逆定理)作平面角; C:利用与棱垂直的直线,通过作棱的垂面作平面角; D:利用无棱二面角的两条平行线作平面角。 (2)证明该角为平面角; (3)归纳到三角形求角。 另外,也可以利用空间向量求出。
4.角的认识
角的认识1。

让学生结合实际生活情景和亲历操作活动来认识角,知道角的各部分的名称,知道一个角由一个顶点和两条边组成,初步学会用尺画角的方法。2。

通过观察实物并从中抽象出角,使学生经历数学知识抽象的过程,感受到数学知识的现实性,学会从数学的角度去观察、分析现实问题,从而激发学生探索数学的兴趣。3。

通过折一折,做一做等活动,使学生对角有些感性认识,知道什么样的图形是角4。让学生知道画一个角的方法:从一个点起,用尺子向不同的方向画两条直直的线,就画成一个角5。

知道角的大小与角的两边的长短没有关系,与两边叉开的大小有关。角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

锐角(acute angle):大于0°,小于90°的角叫做锐角。 直角(right angle):等于90°的角叫做直角。

钝角(obtuse angle):大于90°而小于180°的角叫做钝角。平角(straight angle):等于180°的角叫做平角。

优角(major angle):大于180°小于360°叫优角。劣角(minor angle):大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角(round angle):等于360°的角叫做周角。负角(negative angle):按照顺时针方向旋转而成的角叫做负角。

正角(positive angle):逆时针旋转的角为正角。零角(zero angle):等于0°的角。
5.初中数学角的知识
两条直线被第三条所截,在第三条直线同侧,并且同位(上、下、左、右位置要一样)的两角互为同位角

两条直线相交后所得的有一个公共顶点且有一条公共边的两个角叫做邻补角,一个角的邻补角有两个。一个角与它的邻补角的和等于180°。

两条直线被第三条所截,在第三条直线两侧,并且对位(上、下、左、右位置相反,如一个在左,另一个就在右)的两角互为内错角

两条直线被第三条所截,在第三条直线同侧,并且对位(上、下、左、右位置相反,如一个在左,另一个就在右)的两角互为同旁内角

同位角是F字形,内错角是Z字形,同旁内角是U字形

位于两条直线同侧的角为“同位角”

位于两条直线内部且不在同侧的角为“内错角”

位于两条直线内部且在同侧的角为“同旁内角”

两个相邻且和为180°的角称为邻补角

定义:

习题:

/teacher/details_st?TopicAbb=test&SubjectAbb=sx&FileName=c103sxd428ca01
6.关于数学的小知识
高斯(Gauss 1777~1855)生于Brunswick,位于现在德国中北部。

他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。

七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终于发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。

同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。

经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什么东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。

数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终于找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。

隔年,高斯进入Braunschweig学院。这年,高斯十五岁。

在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。

1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。

最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m*3n*5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。

但是对于正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k * (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。

像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。

事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。

在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由于钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。

「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。

当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。

它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。

必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。

高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。

他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。

这个方法--虽然他当时没有公布--就是「最小平方法」 (Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。

1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式