xy=e^x+y 确定隐函数y的导数dy/dx?
1个回答
展开全部
xy = e^x +y
xy' + y = e^x + y'
y'(1-x) = y -e^x
y' = (y-e^x)/(1-x),1,∵xy=e^(x+y)
∴d(xy)=d[e^(x+y)]
∴y+xdy/dx=d(x+y)e^(x+y)=(1+dy/dx)e^(x+y)
∴(x-e(x+y))dy/dx=e^(x+y)-y
∴dy/dx=[e^(x+y)-y] / [x-e(x+y)],3,xe^x+1-x,2,
xy' + y = e^x + y'
y'(1-x) = y -e^x
y' = (y-e^x)/(1-x),1,∵xy=e^(x+y)
∴d(xy)=d[e^(x+y)]
∴y+xdy/dx=d(x+y)e^(x+y)=(1+dy/dx)e^(x+y)
∴(x-e(x+y))dy/dx=e^(x+y)-y
∴dy/dx=[e^(x+y)-y] / [x-e(x+y)],3,xe^x+1-x,2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询