设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏?

 我来答
新科技17
2022-11-19 · TA获得超过5838个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:72.3万
展开全部
根据球面的对称性,所以对关于x,y,z的奇函数的积分为0
所以∫∫xdS=∫∫ydS=∫∫zdS=0
所以
原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π,4,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式