如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。例如,正弦函数的最小正周期是2π。
y=sinxcos(x+π/4)+cosxsin(x+π/4)
=sin(x+x+π/4)
=sin(2x+π/4)
周期是kπ,(k=整数)。
k=1时,最小正周期是是π。
f(x)=f(x+T)对任何定义域里的X都成立,则T是周期。
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。所以正弦函数和余弦函数的最小正周期是2π。
在函数图象上,最小正周期是函数图象重复出现需要的最短距离。