椭圆中点弦斜率公式怎么求?
1个回答
展开全部
椭圆中点弦斜率公式推导过程如下:
1、椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。
2、椭圆中点弦公式是x^2/a^2+y^2/b^2=1,对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦。
椭圆中点弦问题:中点弦就是对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。
其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦;遇到中点弦问题常用韦达定理或点差法;中点弦问题用点差法,中点弦问题一般用点差法求直线斜率。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询