求z=e^y(cosy+sinx)的偏导数
展开全部
为了计算函数 z = e^y(cos(y) + sin(x)) 的偏导数,我们需要分别对 x 和 y 求偏导数。记偏导数分别为 ∂z/∂x 和 ∂z/∂y。
首先,求关于 x 的偏导数。对于关于 x 的偏导数,我们将 y 视为常数:
∂z/∂x = e^y (0 + cos(x)) = e^y cos(x)
接下来,求关于 y 的偏导数。对于关于 y 的偏导数,我们将 x 视为常数:
∂z/∂y = (e^y)(-sin(y) + 0) + e^y(cos(y) + sin(x)) = e^y (cos(y) - sin(y) + sin(x))
因此,函数 z = e^y(cos(y) + sin(x)) 的偏导数分别为:
∂z/∂x = e^y cos(x)
∂z/∂y = e^y (cos(y) - sin(y) + sin(x))
首先,求关于 x 的偏导数。对于关于 x 的偏导数,我们将 y 视为常数:
∂z/∂x = e^y (0 + cos(x)) = e^y cos(x)
接下来,求关于 y 的偏导数。对于关于 y 的偏导数,我们将 x 视为常数:
∂z/∂y = (e^y)(-sin(y) + 0) + e^y(cos(y) + sin(x)) = e^y (cos(y) - sin(y) + sin(x))
因此,函数 z = e^y(cos(y) + sin(x)) 的偏导数分别为:
∂z/∂x = e^y cos(x)
∂z/∂y = e^y (cos(y) - sin(y) + sin(x))
展开全部
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
原函数z = e^y(cosy+sinx)
对x求偏导,则把y视为常数
∂z/∂x = e^y (cosx)
对y求偏导,则把x视为常数
∂z/∂y = e^y(cosy-siny+sinx)
原函数z = e^y(cosy+sinx)
对x求偏导,则把y视为常数
∂z/∂x = e^y (cosx)
对y求偏导,则把x视为常数
∂z/∂y = e^y(cosy-siny+sinx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
z = e^y(cosy+sinx)
∂z/∂x = e^y (cosx)
∂z/∂y = e^y(cosy+sinx) + e^y(-siny) = e^y(cosy-siny+sinx)
∂z/∂x = e^y (cosx)
∂z/∂y = e^y(cosy+sinx) + e^y(-siny) = e^y(cosy-siny+sinx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询