复合函数求导公式的推导
证明:(dy/du)*(du/dx)把du约掉后等于dy/dx
所以y对x的导数等于y对u的导数乘以u对x的导数。
请问这样证明对吗? 展开
正确(正式)的证明如下:
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。
首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其实就是y=g(x),k=[g'(x) + v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看。
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
写得比较乱,主要是比较复杂,你还是写到纸上看看吧。
你说的约分可以用来帮助记忆,但不能用来当作证明。
正确(正式)的证明如下:
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。
首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x)
+
v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h
(其实就是y=g(x),k=[g'(x)
+
v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看。
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
...展开我们老师说不对。
正确(正式)的证明如下:
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。
首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x)
+
v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h
(其实就是y=g(x),k=[g'(x)
+
v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看。
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
写得比较乱,主要是比较复杂,你还是写到纸上看看吧。
你说的约分可以用来帮助记忆,但不能用来当作证明。收起
你的证明是错误的,有两个地方;
u+du=g(x+dx),??,由u=g(x)能推出吗?,你好像是为了凑出结论而编出的,这只是形式上的问题,尚不太严重,严重的是下面这个,这涉及到基本概念。
( f(g(x+dx)) - f(g(x) ) /dx = f'(x) ??,就算左边有这样一个式子,它等于右边吗?这个写法是将y直接看成了x的函数。按设定,y=f(u),u=g(x),y是u的函数【不论有没有u=g(x)】,我们能看到的是y随u的变化,我们针对y的任何运算【包括求导】只能针对u,只是因为u=g(x),我们才认为y实质上是随x变化的,尽管实质上是这样的,但我们无法对y的运算直接针对x,只能通过中介u而达到。
讲到复合函数求导,那通常的非复合函数的求导就先确定了才行。导数是因为微分的存在而存在【导数是两个微分的比值】。dy=f‘(u)du,du=g'(x)dx,所以,dy=f‘(u)×g'(x)dx,dy/dx=f‘(u)×g'(x)【通过这个链式法则,通过中介,我们间接的找到了实质上y与x的关系】。【注意:dy=f‘(u)du,du=g'(x)dx,这两个式子不论前面的u与后面的u有没有关系,都成立,一定要独立的看。如有关系,是一个u,则链式法则dy/dx=(dy/du)*(du/dx)成立,否则dy/dx就没有意义。】
你的推导方式:用取极限的方法用在复合求导上太繁琐【不是说不行】,因复合求导是基本概念求导上的二级概念,用基本概念推二级概念易懂,取极限的方法与二级概念隔了一层就繁琐。
第一部分也许说的不对,你主要看一些思路吧,仅供参考。