如何求一个四边形的面积?

 我来答
bdzdfanxp
2023-06-09 · TA获得超过7671个赞
知道大有可为答主
回答量:6191
采纳率:73%
帮助的人:936万
展开全部
设夹角为a
四边形被对角线分为4个三角形,对角线四段分别设为m,n,p,q
则4个三角形面积分别为:
S1=1/2*m*p*sina
S2=1/2*m*q*sin(180-a)=1/2*m*q*sina
S3=1/2*n*p*sina
S4=1/2*n*q*sin(180-a)=1/2*n*q*sina
故四边形面积为:
S=S1+S2+S3+S4=1/2*(m*p+m*q+n*p+n*q)*sina
=1/2*(m+n)*(p+q)*sina
其中:(m+n)、(p+q)分别为两对角线长
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式