级数∑(-1)^ n/(2n+1)的敛散性如何判断?

 我来答
enjoy就是家
2023-06-13 · TA获得超过4770个赞
知道答主
回答量:44
采纳率:0%
帮助的人:7628
展开全部

趋近于无穷时就是发散,趋近于一个常数时即是收敛。lim|[x^(2n+3/(2n+3)]/[x^(2n+1/(2n+1)]|
=|x^2|,故R=1,当x=1,级数∑(-1)^n/(2n+1)是收敛的交错级数,当x=-1,级数∑(-1)^(n+1)/(2n+1)也是收敛的交错级数,故收敛区域[-1,1]  。

调和级数1/n发散、1/2n和1/(2n-1)也发散。调和级数:A = ∑(1/n) = 1 + (1/2) + (1/3) + (1/4) + (1/5) + (1/6) + (1/7) + (1/8) + (1/9) + (1/10) +......+1/n。越来越大,趋于无穷,说明是发散。

扩展资料:

同理我们可以得到,A>1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + ......+1/n。因此可以看到A明显发散。级数∑1/2n = 0.5∑(1/n) = 0.5A,因此该级数发散。级数∑1/(2n-1) = ∑1/(2n) - 1/(2n) = 0.5A - 1/(2n),表明该级数由一个发散级数与一个收敛数相加组成,则该级数发散。

例:判断级数敛散性1/(2n-1)(2n+1)。由于1/(2n-1)和1/(2n+1)当n趋于无穷大时都趋于0,则原式当n趋于无穷大时为=(0-0)/2=0 ,故该级数是收敛的。

参考资料来源:百度百科-发散级数

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
茹翊神谕者

2023-07-08 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1657万
展开全部

该级数收敛,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式