同阶的无穷小量是什么意思?
展开全部
同阶无穷小量,其主要对于两个无穷小量的比较而言,意思是两种趋近于0的速度相仿。
如果limF(x)=0,limG(x)=0,且limF(x)/G(x)=c,c为常数并且c≠0,则称F(x)和G(x)是同阶无穷小。例如:计算极限:lim(1-cosx)/x^2在x→0时,得到值为1/2,则说在x→0时,(1-cosx)与x^2是同阶无穷小。
概念:
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
比值为一个常数的两个无穷小即为同阶无穷小。相对于高阶无穷小(比值为无穷小,则称分子是分母的)和低阶无穷小(比值为无穷大,则称分子是分母的)而言(α/sin2α,α→0时,比值=1/2,则α和sin2α为同阶无穷小)。
如果limF(x)=0,limG(x)=0,且limF(x)/G(x)=c,c为常数并且c≠0,则称F(x)和G(x)是同阶无穷小。例如:计算极限:lim(1-cosx)/x^2在x→0时,得到值为1/2,则说在x→0时,(1-cosx)与x^2是同阶无穷小。
概念:
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
比值为一个常数的两个无穷小即为同阶无穷小。相对于高阶无穷小(比值为无穷小,则称分子是分母的)和低阶无穷小(比值为无穷大,则称分子是分母的)而言(α/sin2α,α→0时,比值=1/2,则α和sin2α为同阶无穷小)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询