展开全部
S10=a1+a2……+a10=A
所以S5=a1+a2……+a5=2A
所以a6+a7+……+a10=-A
由等比数列知 a6=a1*(q的5次方),a7=a2*(q的5次方),……a10=a5*(q的5次方)
因为公比不变,所以由等比定理有
(a6+a7+……+a10)/(a1+a2+……+a5)=(-A)/(2A)=-1/2
所以(a11+a12+……+a15)=-1/2×(a6+a7+……+a10)=-1/2×(-A)=A/2
所以S15=(a11+a12+……+a15)+(a6+a7+……+a10)+(a1+a2……+a5)
=A/2-A+2A=3A/2
所以 S15/S5=(3A/2)/2A=3/4
所以S5=a1+a2……+a5=2A
所以a6+a7+……+a10=-A
由等比数列知 a6=a1*(q的5次方),a7=a2*(q的5次方),……a10=a5*(q的5次方)
因为公比不变,所以由等比定理有
(a6+a7+……+a10)/(a1+a2+……+a5)=(-A)/(2A)=-1/2
所以(a11+a12+……+a15)=-1/2×(a6+a7+……+a10)=-1/2×(-A)=A/2
所以S15=(a11+a12+……+a15)+(a6+a7+……+a10)+(a1+a2……+a5)
=A/2-A+2A=3A/2
所以 S15/S5=(3A/2)/2A=3/4
参考资料: 如果您的回答是从其他地方引用,请表明出处
展开全部
q≠1,
不然的话, S10:S5=2:1≠1:2.
S10=a1(1-q^10)/(1-q),
S5= a1(1-q^5)/(1-q),
S10:S5=1+q^5=1/2,
q^5=-1/2.
S15:S5
=1+q^5+q^10=1-1/2+1/4
=3/4.
(注:1-q^15=1-(q^5)^3,用立方差公式分解)
不然的话, S10:S5=2:1≠1:2.
S10=a1(1-q^10)/(1-q),
S5= a1(1-q^5)/(1-q),
S10:S5=1+q^5=1/2,
q^5=-1/2.
S15:S5
=1+q^5+q^10=1-1/2+1/4
=3/4.
(注:1-q^15=1-(q^5)^3,用立方差公式分解)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解析:因为{an}是等比数列,故S5,S10-S5,S15-S10也构成等比数列,
记S5=2k(k≠0),则S10=k
∴S10-S5=-k,进而得S15-S10=1/2 k
于是S15=3/2 k
∴S15:S5=3:4
记S5=2k(k≠0),则S10=k
∴S10-S5=-k,进而得S15-S10=1/2 k
于是S15=3/2 k
∴S15:S5=3:4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
S10*2=S5+S15 设S10=1则S5=2,S15=0
所以s15:S5=0
所以s15:S5=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为等比数列,所以s10=a1(1-q^10)/(1-q)
s5=a1(1-q^5)/(1-q)
故s10:s5=1+q^5=1/2
所以q^5=-1/2
因而s15*/s5=(1-q^15)/(1-q^5)=(1-q^5)(1+q^5+q^10)/(1-q^5)=1+q^5+q^10=1-1/2+1/4=3/4
s5=a1(1-q^5)/(1-q)
故s10:s5=1+q^5=1/2
所以q^5=-1/2
因而s15*/s5=(1-q^15)/(1-q^5)=(1-q^5)(1+q^5+q^10)/(1-q^5)=1+q^5+q^10=1-1/2+1/4=3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询