急:初二下数学几何题。速度加分!~
①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:无论E、F怎样移动,△BEF总是正三角形,请求出该...
①已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:无论E、F怎样移动,△BEF总是正三角形,请求出该三角形面积的变化范围。已知边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D亮点的懂点,F是CD上的动点,满足AE+CF=a,求证:无论E、F怎样移动,△BEF总是正三角形,请求出该三角形面积的变化范围。
②正△ABC,AB、AC的垂线交于D,在AB上任意取一点E,作∠EDF=60°,交AC于F,试探究,BE+CF=EF
速度加分!~
第二提的图。 展开
②正△ABC,AB、AC的垂线交于D,在AB上任意取一点E,作∠EDF=60°,交AC于F,试探究,BE+CF=EF
速度加分!~
第二提的图。 展开
4个回答
展开全部
证明:(1)连接对角线BD,则△ABD,△CBD为两个全等三角形,因为AE+CF=a,所以
DE=CF,又∠EDB=∠FCB=60°,BC=BD=a,所以△BDE全等于△BCF,所以
BE=BF,∠EBD=∠FBC,又∠FBC+∠DBF=∠DBC=60°,
所以,∠EBD+∠DBF=60,△BEF是正三角形,
设△BEF的边长为X,则面积为√3/4X²,而X的变化范围为a-√3/2a.所以面积为
√3/4a²-3√3/16a²
(2) 不能证明,画图可知,设两垂足分别为G,H,很明显,点E在AG上,点F在AH上,BE+CF>EF
DE=CF,又∠EDB=∠FCB=60°,BC=BD=a,所以△BDE全等于△BCF,所以
BE=BF,∠EBD=∠FBC,又∠FBC+∠DBF=∠DBC=60°,
所以,∠EBD+∠DBF=60,△BEF是正三角形,
设△BEF的边长为X,则面积为√3/4X²,而X的变化范围为a-√3/2a.所以面积为
√3/4a²-3√3/16a²
(2) 不能证明,画图可知,设两垂足分别为G,H,很明显,点E在AG上,点F在AH上,BE+CF>EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BD,由角A=60度得三角型ABD是等边三角形,可知道角CDB=60度,又AE+CF=a,又CF+DF=a,可知DF=AE,又BD=AB 角CDB=角A=60度,可知三角形 DBF 和ABE全等,所以BF=BE,且角FBD+角DBE=ABE+EBD=60度,三角形BEF是正三角
三角形BEF在E 和F 分别是中点时取到最小面积(3根号3/16)a方,当E F 和 A D、 D C 重合时面积最大(4根号3/16)a方,由于E 不能和A D 重合,此范围左闭又开。
第2个证明题显然有问题~~
三角形BEF在E 和F 分别是中点时取到最小面积(3根号3/16)a方,当E F 和 A D、 D C 重合时面积最大(4根号3/16)a方,由于E 不能和A D 重合,此范围左闭又开。
第2个证明题显然有问题~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
DE=CF,又∠EDB=∠FCB=60°,BC=BD=a,所以△BDE全等于△BCF,所以
BE=BF,∠EBD=∠FBC,又∠FBC+∠DBF=∠DBC=60°,
所以,∠EBD+∠DBF=60,△BEF是正三角形,
设△BEF的边长为X,则面积为√3/4X²,而X的变化范围为a-√3/2a.所以面积为
√3/4a²-3√3/16a²
(2) 不能证明,画图可知,设两垂足分别为G,H,很明显,点E在AG上,点F在AH上,BE+CF>EF
BE=BF,∠EBD=∠FBC,又∠FBC+∠DBF=∠DBC=60°,
所以,∠EBD+∠DBF=60,△BEF是正三角形,
设△BEF的边长为X,则面积为√3/4X²,而X的变化范围为a-√3/2a.所以面积为
√3/4a²-3√3/16a²
(2) 不能证明,画图可知,设两垂足分别为G,H,很明显,点E在AG上,点F在AH上,BE+CF>EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询