已知p为三角形abc内任意一点。求证在:2/1(AB+BC+CA)<PA+PB+PC<AB+BC

ilovewenping
2009-07-26 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3380
采纳率:100%
帮助的人:2100万
展开全部
证明:延长BP与AC边相交于点D,由三角形两边之和大于第三边得
AB+AD>BD,PD+DC>PC,故
AB+AD+PD+DC>BD+PC=PB+PD+PC,AB+AD+DC>PB+PC,
即AB+AC>PB+PC,
同理可证,AB+BC>PA+PC,BC+CA>PB+PA
将上面3式相加得2AB+2AC+2AC>2PA+2PB+2PC,AB+AC+AC>PA+PB+PC.
再由三角形两边之和大于第三边得
PA+PB>AB ,PB+PC>BC ,PC+PA>CA
将上面3个式子相加得
2(PA+PB+PC)>AB+BC+CA
1/2(AB+BC+AC)< PA+PB+PC
窃拐氖仔照痘Dg
2009-07-26 · TA获得超过213个赞
知道答主
回答量:111
采纳率:75%
帮助的人:16.6万
展开全部
xue xi
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式