球的表面积公式推导过程

个位同志,球的表面积公式到底是如何推出的,为何我推了几次都是S=π平方*R平方,原理是先割成1个半球,再把这个半球割成无数个小三角形,小三角形的底之和即为圆周(2πR),... 个位同志,球的表面积公式到底是如何推出的,为何我推了几次都是 S=π平方
*R平方,原理是先割成1个半球,再把这个半球割成无数个小三角形,小三角形的底之和即为圆周(2πR),高为四分之一圆周(1/2πR),圆的表面积就是 (2πR*1/2πR)/2 *2=π平方*R平方,是我的原理错了还是小三角形的高不是四分之一圆周(1/2πR)?如果是我原理错了请另告诉我原理,如果是小三角形的高错了,请告诉我小三角形的高是什么并证明。谢谢
展开
新一和柚子
推荐于2017-10-01 · TA获得超过1311个赞
知道答主
回答量:89
采纳率:0%
帮助的人:74.3万
展开全部
让圆y=√(R^2-x^2)绕x轴旋转,得到球体x^2+y^2+z^2≤R^2。求球的表面积。
以x为积分变量,积分限是[-R,R]。
在[-R,R]上任取一个子区间[x,x+△x],这一段圆弧绕x轴得到的球上部分的面积近似为2π×y×ds,ds是弧长。
所以球的表面积S=∫<-R,R>2π×y×√(1+y'^2)dx,整理一下即得到S=4πR
几何智造
2025-03-08 广告
几何智造186-7679-5154(深圳市几何智造技术有限公司)是一家高新科技创新型企业,专注于国际物流行业货物高精度测量、自动化分拣、高性能输送线、智能仓储服务以及控制系统研发,专为国际货代行业提供全自动化高效率的物流解决方案。旗下主要产... 点击进入详情页
本回答由几何智造提供
行星复苏
2009-07-30 · TA获得超过315个赞
知道答主
回答量:126
采纳率:0%
帮助的人:88.6万
展开全部
我不知道你的想法,但我这样求(为什么“高为四分之一圆周(1/2πR)”)。
把整个球分为一个个一摸一样的整四棱锥,它们的顶点聚集于球心,而其底面则共同构成球面,也就是说这是一个正多面体,于是当正四棱锥无限多时,球体积就等于四棱锥体积和,即V(四棱锥和)=nV(四棱锥)=V(球)=4/3*πr^3
四棱锥的高就是半径,即h=r
又V(四棱锥)=1/3*Sh
所以球面积
S=nS(四棱锥)=n(3V(四棱锥)/h)=3nV(四棱锥)/h=3*4/3*πr^3/r=2πr²
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友1d57196
2009-08-08
知道答主
回答量:26
采纳率:0%
帮助的人:12.9万
展开全部
用^表示平方

把一个半径为R的球的上半球切成n份 每份等高

并且把每份看成一个圆柱,其中半径等于其底面圆半径

则从下到上第k个圆柱的侧面积S(k)=2πr(k)*h

其中h=R/n r(k)=根号[R^-(kh)^]

S(k)=根号[R^-(kR/n)^]*2πR/n

=2πR^*根号[1/n^-(k/n^)^]

则 S(1)+S(2)+……+S(n) 当 n 取极限(无穷大)的时候就是半球表面积2πR^

乘以2就是整个球的表面积 4πR^
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
水光自然
2009-07-27 · TA获得超过186个赞
知道答主
回答量:225
采纳率:0%
帮助的人:0
展开全部
小三角形的底之和即为圆周(2πR),高为四分之一圆周(1/2πR),

这句错了啦!!
这是曲面勒

要用微积分,看楼上。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式