在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,
且b2+S2=12.q=S2/b2(Ⅰ)求an与bn;(Ⅱ)设数列{cn}满足cn=1/Sn,求的{cn}的前n项和Tn....
且b2+S2=12.q=S2/b2
(Ⅰ)求an与bn;
(Ⅱ)设数列{cn}满足cn=1/Sn,求的{cn}的前n项和Tn. 展开
(Ⅰ)求an与bn;
(Ⅱ)设数列{cn}满足cn=1/Sn,求的{cn}的前n项和Tn. 展开
3个回答
展开全部
(1)
an=a1+(n-1)d, a1=3
Sn =a1+a2+...+an
bn=b1q^(n-1) =q^(n-1)
b2+S2=12
q+6+d=12
q+d=6 (1)
q=S2/b2
=(6+d)/q
6+d =q^2
6+6-q=q^2 (from (1))
q^2+q-12=0
(q-3)(q+4)=0
q=3
from (1) d=3
an = 3+3(n-1)=3n
bn =3^(n-1)
(2)
Sn = 3(n+1)n/2
cn =1/Sn
= (2/3)[1/n(n+1)]
= (2/3)[ 1/n -1/(n+1) ]
Tn =c1+c2+...+cn
=(2/3)[ 1- 1/(n+1) ]
= 2n/[3(n+1)]
an=a1+(n-1)d, a1=3
Sn =a1+a2+...+an
bn=b1q^(n-1) =q^(n-1)
b2+S2=12
q+6+d=12
q+d=6 (1)
q=S2/b2
=(6+d)/q
6+d =q^2
6+6-q=q^2 (from (1))
q^2+q-12=0
(q-3)(q+4)=0
q=3
from (1) d=3
an = 3+3(n-1)=3n
bn =3^(n-1)
(2)
Sn = 3(n+1)n/2
cn =1/Sn
= (2/3)[1/n(n+1)]
= (2/3)[ 1/n -1/(n+1) ]
Tn =c1+c2+...+cn
=(2/3)[ 1- 1/(n+1) ]
= 2n/[3(n+1)]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为
b1=1,公比为q,所以b2=b1*q=q
又因为q=S2/b2,
所以,s2=q*b2=q^2*b1=q^2
代入b2+S2=12,得
q+q^2=12,解方程得q=3或-4
因为bn各项为正数,所以q=3
所以 bn=b1*q^(n-1)=3^(n-1)
an的公差=a2-a1=s2-2*a1=q^2-2*a1=9-6=3
所以an=a1+(n-1)*3=3*n
(2)因为 an==3*n
所以 sn=(a1+an)*n/2=3/2*n*(n+1)
cn=1/Sn=2/3*[1/n*1/(n+1)]=2/3*([1/n-1/(n+1)]
Tn=2/3*([1/1-1/(1+1)]+2/3*([1/2-1/(2+1)]+……+2/3*([1/n-1/(n+1)]
=2/3*[1-1/(n+1)]
b1=1,公比为q,所以b2=b1*q=q
又因为q=S2/b2,
所以,s2=q*b2=q^2*b1=q^2
代入b2+S2=12,得
q+q^2=12,解方程得q=3或-4
因为bn各项为正数,所以q=3
所以 bn=b1*q^(n-1)=3^(n-1)
an的公差=a2-a1=s2-2*a1=q^2-2*a1=9-6=3
所以an=a1+(n-1)*3=3*n
(2)因为 an==3*n
所以 sn=(a1+an)*n/2=3/2*n*(n+1)
cn=1/Sn=2/3*[1/n*1/(n+1)]=2/3*([1/n-1/(n+1)]
Tn=2/3*([1/1-1/(1+1)]+2/3*([1/2-1/(2+1)]+……+2/3*([1/n-1/(n+1)]
=2/3*[1-1/(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询