如图,初二数学题。第四题,求解。
展开全部
解:(1)原式=1/(x-1)+[1/(x-2)-1/(x-1)]+[1/(x-3)-1/(x-2)]
=1/(x-1)+1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)=1/(x-3);
(2)原式=1/m(m-3)+1/(m-3)(m-6)+1/(m-6)(m-9)
=(1/3)*[1/(m-3)-1/m+1/(m-6)-1/(m-3)+1/(m-9)-1/(m-6)
=(1/3)[1/(m-9)-1/m]=(1/3)[9/m(m-9)]=3/(m(m-9)
=1/(x-1)+1/(x-2)-1/(x-1)+1/(x-3)-1/(x-2)=1/(x-3);
(2)原式=1/m(m-3)+1/(m-3)(m-6)+1/(m-6)(m-9)
=(1/3)*[1/(m-3)-1/m+1/(m-6)-1/(m-3)+1/(m-9)-1/(m-6)
=(1/3)[1/(m-9)-1/m]=(1/3)[9/m(m-9)]=3/(m(m-9)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询