求助,解高数题。谢谢!!!!

wjl371116
2014-01-13 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67429

向TA提问 私信TA
展开全部
11.求y'-2y=x的通解
解:先求齐次方程y'-2y=0的通解。
y'=2y,分离变量得dy/y=2dx,积分之得lny=2x+lnC;即y=e^(2x+lnC)=Ce^(2x);
将积分常数换成x的函数u,(参数变易法)得y=ue^(2x)............(1)
将(1)的两边对x取导数得dy/dx=(du/dx)e^(2x)+2ue^(2x).........(2)
将(1)和(2)一起代入原方程得(du/dx)e^(2x)+2ue^(2x)-2ue^(2x)=x
化简得(du/dx)e^(2x)=x,分离变量得du=xe^(-2x)dx;
积分之得u=∫xe^(-2x)dx=-(1/2)∫xd[e^(-2x)]=-(1/2)[xe^(-2x)-∫e^(-2x)dx]
=-(1/2)[xe^(-2x)+(1/2)∫e^(-2x)d(-2x)
=-(1/2)[xe^(-2x)+(1/2)e^(-2x)]+C
=-(1/2)(x+1/2)e^(-2x)+C
代入(1)式得y=[-(1/2)(x+1/2)e^(-2x)+C]e^(2x)=-(1/2)(x+1/2)+Ce^(2x).
故原方程的通解为y=Ce^(2x)-(1/2)x-1/4.
6.求定积分【0,1】∫e^√(x+1)dx
解:令√(x+1)=u,则x+1=u²,x=u²-1,dx=2udu;x=0时u=1;x=1时u=√2;代入原式得:
原式=【1,√2】2∫ue^udu=【1,√2】2∫ud(e^u)=【1,√2】2[ue^u-∫e^udu]
=2[ue^u-e^u]【1,√2】=2(u-1)e^u【1,√2】=2(√2-1)e^√2
5。xy+x²+y²=3在(1,1)处的切线和法线方程
解:设F(x,y)=xy+x²+y²-3=0,则
dy/dx=-(∂F/∂x)/(∂F/∂y)=-(y+2x)/(x+2y),故y'(1,1)=-1
于是得(1,1)处的切线方程为y=-(x-1)+1=-x+2.
(1,1)处的法线方程为y=(x-1)+1=x.
6。求广义积分【1,+∞】∫dx/√(1+x²)
解:令x=tanu,则dx=sec²udu;x=1时u=π/4;x→+∞时u→π/2,故
原式=【π/4,π/2】∫secudu=ln(secu+tanu)【π/4,π/2】
=u→π/2lim[ln(secu+tanu)-ln(√2+1)
=u→π/2lim[ln(1/cosu+sinu/cosu)]-ln(1+√2)
=u→π/2lim[ln(1+sinu)/cosu]-ln(1+√2)
=+∞
9。求定积分【0,π】∫[(xsinx)/cos²x]dx
解:原式=【0,π】∫xsecxtanxdx=【0,π】∫xd(secx)
=【0,π】[xsecx-∫secxdx]
=【0,π】[xsecx-ln(secx+tanx)]
=【0,π/2】[xsecx-ln(secx+tanx)]+【π/2,π】[xsecx-ln∣(secx+tanx)∣]
=x→π/2lim[xsecx-ln(secx+tanx)]-π-{x→π/2lim[xsecx-ln(secx+tanx)]}
=-π
追问
谢谢!!!!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式