求解,数学,好评
2014-04-17
展开全部
Sn=2kn^2, Tn=kn(3n+1)
所以当n≥2时,
an/bn=[Sn-S(n-1)]/[Tn-T(n-1)]
=[2kn^2-2k(n-1)^2]/[kn(3n+1)-k(n-1)(3n-2)]
=2[n^2-n^2+2n-1]/[3n^2+n-(3n^2-2n-3n+2)]
=2(2n-1)/(6n-2)
=(2n-1)/(3n-1)
当n=1时,a1/b1=2/4=1/2,也满足an/bn=(2n-1)/(3n-1)
所以两数列第n项之比an/bn=(2n-1)/(3n-1)
所以当n≥2时,
an/bn=[Sn-S(n-1)]/[Tn-T(n-1)]
=[2kn^2-2k(n-1)^2]/[kn(3n+1)-k(n-1)(3n-2)]
=2[n^2-n^2+2n-1]/[3n^2+n-(3n^2-2n-3n+2)]
=2(2n-1)/(6n-2)
=(2n-1)/(3n-1)
当n=1时,a1/b1=2/4=1/2,也满足an/bn=(2n-1)/(3n-1)
所以两数列第n项之比an/bn=(2n-1)/(3n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询