(2011•日照)如图,已知点D为等腰直角 △ABC内一 点, ∠CAD=∠CBD=15°,E为A
(2011•日照)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2...
(2011•日照)如图,已知点D为等腰直角 △ABC内一 点,
∠CAD=∠CBD=15°,E为AD延长线上的一 点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点M在DE上,且DC=DM,求证: ME=BD. 展开
∠CAD=∠CBD=15°,E为AD延长线上的一 点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点M在DE上,且DC=DM,求证: ME=BD. 展开
1个回答
2014-07-15 · 知道合伙人软件行家
关注
展开全部
证明:(1)∵△ABC是等腰直角三角形,
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∴∠CDE=15°+45°=60°,
∴∠BDE=∠DBA+∠BAD=60°;
∴∠CDE=∠BDE,
即DE平分∠BDC.
(2)如图,连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,
∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC∠DAC=∠MECAC=EC,
∴△ADC≌△EMC(AAS),
∴ME=AD=BD.
打的我好苦,选我吧!
∴∠BAC=∠ABC=45°,
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=45°-15°=30°,
∴BD=AD,
∴D在AB的垂直平分线上,
∵AC=BC,
∴C也在AB的垂直平分线上,
即直线CD是AB的垂直平分线,
∴∠ACD=∠BCD=45°,
∴∠CDE=15°+45°=60°,
∴∠BDE=∠DBA+∠BAD=60°;
∴∠CDE=∠BDE,
即DE平分∠BDC.
(2)如图,连接MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,即CM=CD.∠DMC=∠MDC=60°,
∵∠ADC+∠MDC=180°,∠DMC+∠EMC=180°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM.
在△ADC与△EMC中,
∠ADC=∠EMC∠DAC=∠MECAC=EC,
∴△ADC≌△EMC(AAS),
∴ME=AD=BD.
打的我好苦,选我吧!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询