求解答,谢谢!
1个回答
展开全部
解:函数f(x)=x2-2ax+5的对称轴是x=a,则其单调减区间为(-∞,a],
因为f(x)在区间(-∞,2]上是减函数,所以2≤a,即a≥2.
则|a-1|≥|(a+1)-a|=1,
因此任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,只需|f(a)-f(1)|≤4即可,
即|(a2-2a2+5)-(1-2a+5)|=|a2-2a+1|=(a-1)2≤4,亦即-2≤a-1≤2,
解得-1≤a≤3,又a≥2,
因此a∈[2,3].
因为f(x)在区间(-∞,2]上是减函数,所以2≤a,即a≥2.
则|a-1|≥|(a+1)-a|=1,
因此任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,只需|f(a)-f(1)|≤4即可,
即|(a2-2a2+5)-(1-2a+5)|=|a2-2a+1|=(a-1)2≤4,亦即-2≤a-1≤2,
解得-1≤a≤3,又a≥2,
因此a∈[2,3].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询