2014-07-22 · 知道合伙人教育行家
关注
展开全部
∵√(x-3) ≥0, √(5-x)≥0
∴y = √(x-3) + √(5-x) >0
y²=x-3+5-x+2√(x-3)(5-x)=2+2√[(x-3)(5-x)]=2+2√[-(x-4)²+1]
∵x∈(3,4),
x-4∈(-1,0),
(x-4)²∈(0,1),
-(x-4)²+1∈(0,1)
2√[-(x-4)²+1]∈(0,2)
2+2√[-(x-4)²+1]∈(2,4),
即y²∈(2,4),
y∈(√2,2)
∴值域 (√2,2)
∴y = √(x-3) + √(5-x) >0
y²=x-3+5-x+2√(x-3)(5-x)=2+2√[(x-3)(5-x)]=2+2√[-(x-4)²+1]
∵x∈(3,4),
x-4∈(-1,0),
(x-4)²∈(0,1),
-(x-4)²+1∈(0,1)
2√[-(x-4)²+1]∈(0,2)
2+2√[-(x-4)²+1]∈(2,4),
即y²∈(2,4),
y∈(√2,2)
∴值域 (√2,2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先,定义域[3,5]
其次,这个函数值大于0,平方后不影响函数的增减性
因此[f(x)]^2=[√(x-3)+√(5-x)]^2
=x-3+5-x+2√[(x-3)(5-x)]
=2+2√[(x-3)(5-x)]
后面根号里的可以判断出增减性吧?那个就是f(x)的增减性
其次,这个函数值大于0,平方后不影响函数的增减性
因此[f(x)]^2=[√(x-3)+√(5-x)]^2
=x-3+5-x+2√[(x-3)(5-x)]
=2+2√[(x-3)(5-x)]
后面根号里的可以判断出增减性吧?那个就是f(x)的增减性
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询