如图,等边三角形ABC的边长为3,P为BC边上的一点,且BP=1,D为AC上的一点,若∠APD=60度,则CD的长为
3个回答
展开全部
第一个问题:
∵△ABC是等边三角形,∴∠B=60°,又AB=3、BP=1,
∴由余弦定理,有:AP^2=AB^2+BP^2-2AB×BPcos∠B=9+1-2×3×1×cos60°=7,
∴AP=√7。
∵△ABC是等边三角形,∴AC=BC=AB=3,∴CP=BC-BP=3-1=2。
由余弦定理,有:CP^2=AP^2+AC^2-2AP×ACcos∠CAP,
∴4=7+9-2×√7×3cos∠CAP,∴6√7cos∠CAP=12,∴cos∠CAP=2/√7。
∴sin∠CAP=√[1-(cos∠CAP)^2]=√(1-4/7)=√3/√7。
又∠APD=60°。
∴sin∠ADP
=sin(180°-∠APD-∠CAP)=sin(∠APD+∠CAP)=sin(60°+∠CAP)
=sin60°cos∠CAP+cos60°sin∠CAP=(√3/2)×(2/√7)+(1/2)×(√3/√7)=3√3/(2√7)。
由正弦定理,有:AD/sin∠APD=AP/sin∠ADP,
∴AD=APsin∠APD/sin∠ADP=√7sin60°/[3√3/(2√7)]=7/3,
∴CD=AC-AD=3-7/3=2/3。
第二个问题:
∵△ABC是等边三角形,∴∠C=60°,∴sin∠C=√3/2。
S(△PDC)=(1/2)CP×CDsin∠C=(1/2)×2×(2/3)×(√3/2)=√3/3。
∵△ABC是等边三角形,∴∠B=60°,又AB=3、BP=1,
∴由余弦定理,有:AP^2=AB^2+BP^2-2AB×BPcos∠B=9+1-2×3×1×cos60°=7,
∴AP=√7。
∵△ABC是等边三角形,∴AC=BC=AB=3,∴CP=BC-BP=3-1=2。
由余弦定理,有:CP^2=AP^2+AC^2-2AP×ACcos∠CAP,
∴4=7+9-2×√7×3cos∠CAP,∴6√7cos∠CAP=12,∴cos∠CAP=2/√7。
∴sin∠CAP=√[1-(cos∠CAP)^2]=√(1-4/7)=√3/√7。
又∠APD=60°。
∴sin∠ADP
=sin(180°-∠APD-∠CAP)=sin(∠APD+∠CAP)=sin(60°+∠CAP)
=sin60°cos∠CAP+cos60°sin∠CAP=(√3/2)×(2/√7)+(1/2)×(√3/√7)=3√3/(2√7)。
由正弦定理,有:AD/sin∠APD=AP/sin∠ADP,
∴AD=APsin∠APD/sin∠ADP=√7sin60°/[3√3/(2√7)]=7/3,
∴CD=AC-AD=3-7/3=2/3。
第二个问题:
∵△ABC是等边三角形,∴∠C=60°,∴sin∠C=√3/2。
S(△PDC)=(1/2)CP×CDsin∠C=(1/2)×2×(2/3)×(√3/2)=√3/3。
追问
初二没有学到正弦定理把
展开全部
为什么不用相似
是寻求另一个方法?
是寻求另一个方法?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
pc=3-1=2
ab:pc=bp:cd
因为∠bap+∠apb=180°-∠b
=180°-60°
∠dpc+∠apc=180°-∠apd=180°-60°
所以∠bap=∠dpc
又因为∠b=∠c
所以△abp∽△pcd
ab:pc=bp:cd
=ap:pd
ab=bc=ac
所以pc=3-1=2
所以cd=2/3
ab:pc=bp:cd
因为∠bap+∠apb=180°-∠b
=180°-60°
∠dpc+∠apc=180°-∠apd=180°-60°
所以∠bap=∠dpc
又因为∠b=∠c
所以△abp∽△pcd
ab:pc=bp:cd
=ap:pd
ab=bc=ac
所以pc=3-1=2
所以cd=2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询