初二的题目,写应为所以,求用纸写下来,再发给我,在线等。。
1个回答
展开全部
解:(1)证明:在等边三角形ADC中,
∵DF⊥AC,
∴DF垂直平分AC,
∴AE=CE,
∴∠ACE=∠CAE(等边对等角);
∵∠ACB=90°(已知),
∴∠ACE+∠BCE=∠CAE+∠B=90°,
∴∠BCE=∠B,
∴CE=BE(等角对等边),
∴AE=CE=BE;
(2)由(1)知,DE垂直平分AC,
∴PC=PA,
∴PB+PC=PB+PA;
∴当PB+PC最小时,也就是PB+PA最小,即点P、B、A在同一直线上最小,所以点P在E处时最小.
当点P在E处时,PB+PC=EB+EC=EB+EA=AB=15cm.
∵DF⊥AC,
∴DF垂直平分AC,
∴AE=CE,
∴∠ACE=∠CAE(等边对等角);
∵∠ACB=90°(已知),
∴∠ACE+∠BCE=∠CAE+∠B=90°,
∴∠BCE=∠B,
∴CE=BE(等角对等边),
∴AE=CE=BE;
(2)由(1)知,DE垂直平分AC,
∴PC=PA,
∴PB+PC=PB+PA;
∴当PB+PC最小时,也就是PB+PA最小,即点P、B、A在同一直线上最小,所以点P在E处时最小.
当点P在E处时,PB+PC=EB+EC=EB+EA=AB=15cm.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询