证明:若(f(x),g(x))=1,则,(f(x)g(x),f(x)+g(x))=1
1个回答
展开全部
设(f(x)g(x),f(x)+g(x))=d(x)
所以d(x) | f(x)g(x),d(x) | f(x)+g(x)
因为(f(x),g(x))=1
所以由d(x) | f(x)g(x),得到d(x) | f(x)或d(x) | g(x)
不妨设d(x) | f(x)
由d(x) | f(x)+g(x)得到d(x) | g(x)
所以d(x) | (f(x),g(x))
d(x)=1
所以d(x) | f(x)g(x),d(x) | f(x)+g(x)
因为(f(x),g(x))=1
所以由d(x) | f(x)g(x),得到d(x) | f(x)或d(x) | g(x)
不妨设d(x) | f(x)
由d(x) | f(x)+g(x)得到d(x) | g(x)
所以d(x) | (f(x),g(x))
d(x)=1
追问
设c≠0,证明:若f(x)=f(x-c),则f(x)只能是常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询