如图,已知三角形ABC是等边三角形,D、E分别是AC、BC上的点,BD、AE交于点R,BF⊥AE,
如图,已知三角形ABC是等边三角形,D、E分别是AC、BC上的点,BD、AE交于点R,BF⊥AE,若AD=CE,求证:BR=2FR谢谢...
如图,已知三角形ABC是等边三角形,D、E分别是AC、BC上的点,BD、AE交于点R,BF⊥AE,若AD=CE,求证:BR=2FR
谢谢 展开
谢谢 展开
1个回答
2014-11-02
展开全部
证明:过A作AF⊥BC于F
∵∠EDB=60° , DE=DB
∴△EDB是等边三角形,DE=DB=EB
∵△ABC是等腰三角形
∴BF=CF,2BF=BC
又∵∠DAF=30°
∴AD=2DF
又:DF=DB+BF
∴AD=2(DB+BF)=2DB+2BF=2DB+BC
(AE+ED)=2DB+BC,其中ED=DB
∴AE=DB+BC=BE+BC
或者
证明:在DC的延长线上取点F,使CF=BD,连接AF
∵AB=AC
∴∠ABC=∠ACB
∵∠ABD=180°-∠ABC,∠ACF=180°-∠ACB
∴∠ABD=∠ACF
∵CF=BD
∴△ABD≌△ACF (SAS)
∴∠AFC=∠ABD
∵∠ABD=60
∴∠AFC=60
∴等边△ADF
∴AD=DF
∵DE=BD
∴等边△BDE
∴DE=BD=BE
∴CF=BE
∵AE=AD-DE,BF=DF-BD
∴AE=BF=BC+CF=BC+BE
∵∠EDB=60° , DE=DB
∴△EDB是等边三角形,DE=DB=EB
∵△ABC是等腰三角形
∴BF=CF,2BF=BC
又∵∠DAF=30°
∴AD=2DF
又:DF=DB+BF
∴AD=2(DB+BF)=2DB+2BF=2DB+BC
(AE+ED)=2DB+BC,其中ED=DB
∴AE=DB+BC=BE+BC
或者
证明:在DC的延长线上取点F,使CF=BD,连接AF
∵AB=AC
∴∠ABC=∠ACB
∵∠ABD=180°-∠ABC,∠ACF=180°-∠ACB
∴∠ABD=∠ACF
∵CF=BD
∴△ABD≌△ACF (SAS)
∴∠AFC=∠ABD
∵∠ABD=60
∴∠AFC=60
∴等边△ADF
∴AD=DF
∵DE=BD
∴等边△BDE
∴DE=BD=BE
∴CF=BE
∵AE=AD-DE,BF=DF-BD
∴AE=BF=BC+CF=BC+BE
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询