(2010?义乌市)如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定
(2010?义乌市)如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=12B...
(2010?义乌市)如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是( )①△BDF是等腰三角形;②DE=12BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1B.2C.3D.4
展开
1个回答
展开全部
①∵DE∥BC,
∴∠ADE=∠B,∠EDF=∠BFD,
又∵△ADE≌△FDE,
∴∠ADE=∠EDF,AD=FD,AE=CE,
∴∠B=∠BFD,
∴△BDF是等腰三角形,故①正确;
同理可证,△CEF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
∴DE=
BC,故②正确;
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故④正确.
而无法证明四边形ADFE是菱形,故③错误.
所以一定正确的结论个数有3个,
故选C.
∴∠ADE=∠B,∠EDF=∠BFD,
又∵△ADE≌△FDE,
∴∠ADE=∠EDF,AD=FD,AE=CE,
∴∠B=∠BFD,
∴△BDF是等腰三角形,故①正确;
同理可证,△CEF是等腰三角形,
∴BD=FD=AD,CE=FE=AE,
∴DE是△ABC的中位线,
∴DE=
1 |
2 |
∵∠B=∠BFD,∠C=∠CFE,
又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,
∴∠BDF+∠FEC=2∠A,故④正确.
而无法证明四边形ADFE是菱形,故③错误.
所以一定正确的结论个数有3个,
故选C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询