已知关于x的方程(k-1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有
已知关于x的方程(k-1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程y2+(a-4k)y...
已知关于x的方程(k-1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程y2+(a-4k)y+a+1=0的整数根(a为正整数).
展开
1个回答
展开全部
(1)∵关于x的方程(k-1)x2+2kx+k+3=0有两个不相等的实数根,
∴△=b2-4ac=(2k)2-4×(k-1)×(k+3)=4k2-4k2-8k+12=-8k+12>0…(1分)
解得:k<
,
∵k-1≠0,即k≠1,
∴k的取值范围是k<
且k≠码伏1. …(3分)
(2)∵当方程有两个相等的实数根时,△=-8k+12=0.
∴k=
. …(4分)
∴关于y的方程为y2+(a-6)y+a+1=0.
∴△′=(a-6)2-4(a+1)=a2-12a+36-4a-4=a2-16a+32=(a-8)2-32.
由a为正整数,当(a-8)2-32是完全平方数时,方程才有可能有整数根.
设(a-8)2-32=m2(其中m为整数),32=p?q(p、q均为整数)销铅,
∴(a-8)2-m2=32.即(a-8+m)(a-8-m)=32.
不妨设
两式相加,得a=
.
∵(a-8+m)与(a-8-m)的奇偶性相同,
∴32可分解为2×16,4×8,(-2)×(-16),(-4)×(-8),
∴p+q=18或12或-18或-12.
∴a=17或14或-1(不合题意,舍去)或2.
当a=17时,方程的两根为y=
,即y1=-2,y2=-9.…(5分)
当a=14时,迟斗携方程的两根为y=
,即y1=-3,y2=-5.…(6分)
当a=2时,方程的两根为y=
,即y1=3,y2=1. …(7分)
∴△=b2-4ac=(2k)2-4×(k-1)×(k+3)=4k2-4k2-8k+12=-8k+12>0…(1分)
解得:k<
3 |
2 |
∵k-1≠0,即k≠1,
∴k的取值范围是k<
3 |
2 |
(2)∵当方程有两个相等的实数根时,△=-8k+12=0.
∴k=
3 |
2 |
∴关于y的方程为y2+(a-6)y+a+1=0.
∴△′=(a-6)2-4(a+1)=a2-12a+36-4a-4=a2-16a+32=(a-8)2-32.
由a为正整数,当(a-8)2-32是完全平方数时,方程才有可能有整数根.
设(a-8)2-32=m2(其中m为整数),32=p?q(p、q均为整数)销铅,
∴(a-8)2-m2=32.即(a-8+m)(a-8-m)=32.
不妨设
|
p+q+16 |
2 |
∵(a-8+m)与(a-8-m)的奇偶性相同,
∴32可分解为2×16,4×8,(-2)×(-16),(-4)×(-8),
∴p+q=18或12或-18或-12.
∴a=17或14或-1(不合题意,舍去)或2.
当a=17时,方程的两根为y=
?11±7 |
2 |
当a=14时,迟斗携方程的两根为y=
?8±2 |
2 |
当a=2时,方程的两根为y=
4±2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询