(2013?枣阳市模拟)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF
(2013?枣阳市模拟)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠B...
(2013?枣阳市模拟)如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)求△AEF的面积.
展开
1个回答
展开全部
证明:如右图,
(1)∵四边形ABCD是正方形,
∴∠B=90°,AB=BC,
∵G、E是AB、BC中点,
∴BG=
AB,BE=
BC,
∴BG=BE,
∴∠BGE=∠BEG=45°,
∴∠BGE=∠1+∠2=45°,
∵∠AEF=90°,
∴∠1+∠4=180°-45°-90°=45°,
∴∠2=∠4,
即∠BAE=∠FEC;
(2)由(1)知∠BGE=45°,
∴∠AGE=135°,
∵CF是∠DCH的角平分线,
∴∠FCH=
×90°=45°,
∴∠ECF=135°,
∵四边形ABCD是正方形,
∴AB=BC,
∵G、E是AB、BC中点,
∴AG=
AB,EC=
BC,
∴AG=EC,
在△AGE和△ECF中,
,
∴△AGE≌△ECF,
∴AE=EF,
在Rt△ABE中,∵AE2=AB2+BE2,
∴AE2=
a2,
∴S△AEF=
×AE×EF=
AE2=
×
a2=
a2.
(1)∵四边形ABCD是正方形,
∴∠B=90°,AB=BC,
∵G、E是AB、BC中点,
∴BG=
1 |
2 |
1 |
2 |
∴BG=BE,
∴∠BGE=∠BEG=45°,
∴∠BGE=∠1+∠2=45°,
∵∠AEF=90°,
∴∠1+∠4=180°-45°-90°=45°,
∴∠2=∠4,
即∠BAE=∠FEC;
(2)由(1)知∠BGE=45°,
∴∠AGE=135°,
∵CF是∠DCH的角平分线,
∴∠FCH=
1 |
2 |
∴∠ECF=135°,
∵四边形ABCD是正方形,
∴AB=BC,
∵G、E是AB、BC中点,
∴AG=
1 |
2 |
1 |
2 |
∴AG=EC,
在△AGE和△ECF中,
|
∴△AGE≌△ECF,
∴AE=EF,
在Rt△ABE中,∵AE2=AB2+BE2,
∴AE2=
5 |
4 |
∴S△AEF=
1 |
2 |
1 |
2 |
1 |
2 |
5 |
4 |
5 |
8 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询