在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC.(Ⅰ)求角B的大小;(Ⅱ)若b=4
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC.(Ⅰ)求角B的大小;(Ⅱ)若b=4,求△ABC的面积的最大值....
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC.(Ⅰ)求角B的大小;(Ⅱ)若b=4,求△ABC的面积的最大值.
展开
1个回答
展开全部
(Ⅰ)在△ABC中,利用正弦定理化简(2a-c)cosB=bcosC,得(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB-sinCcosB=sinBcosC,即2sinAcosB=sin(C+B)=sinA,
∵sinA≠0,
∴cosB=
,
∵B∈(0,π),
∴B=
;
(Ⅱ)根据余弦定理b2=a2+c2-2accosB,即16=a2+c2-ac,
∵a2+c2≥2ac(当且仅当时取“=”号),
∴16=a2+c2-ac≥2ac-ac=ac,即ac≤16,当且仅当a=c时取等号,
∴S△ABC=
acsinB=
ac≤4
,
则△ABC面积的最大值为4
.
整理得:2sinAcosB-sinCcosB=sinBcosC,即2sinAcosB=sin(C+B)=sinA,
∵sinA≠0,
∴cosB=
1 |
2 |
∵B∈(0,π),
∴B=
π |
3 |
(Ⅱ)根据余弦定理b2=a2+c2-2accosB,即16=a2+c2-ac,
∵a2+c2≥2ac(当且仅当时取“=”号),
∴16=a2+c2-ac≥2ac-ac=ac,即ac≤16,当且仅当a=c时取等号,
∴S△ABC=
1 |
2 |
| ||
4 |
3 |
则△ABC面积的最大值为4
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询