(1)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;(2)已知,如
(1)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;(2)已知,如图②,AB是⊙O的直径,CA与⊙O相切于点A.连接C...
(1)已知,如图①,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE=CF;(2)已知,如图②,AB是⊙O的直径,CA与⊙O相切于点A.连接CO交⊙O于点D,CO的延长线交⊙O于点E.连接BE、BD,∠ABD=30°,求∠EBO和∠C的度数.
展开
1个回答
展开全部
解答:(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC.
∴∠ADE=∠FBC.(1分)
在△ADE和△CBF中,
∵AD=BC,∠ADE=∠FBC,DE=BF,
∴△ADE≌△CBF.(2分)
∴AE=CF.(3分)
(2)解:∵DE是⊙O的直径,
∴∠DBE=90°.(1分)
∵∠ABD=30°,
∴∠EBO=∠DBE-∠ABD=90°-30°=60°.(2分)
∵AC是⊙O的切线,
∴∠CAO=90°.(3分)
又∠AOC=2∠ABD=60°,
∴∠C=180°-∠AOC-∠CAO=180°-60°-90°=30°.(4分)
∴AD=BC,AD∥BC.
∴∠ADE=∠FBC.(1分)
在△ADE和△CBF中,
∵AD=BC,∠ADE=∠FBC,DE=BF,
∴△ADE≌△CBF.(2分)
∴AE=CF.(3分)
(2)解:∵DE是⊙O的直径,
∴∠DBE=90°.(1分)
∵∠ABD=30°,
∴∠EBO=∠DBE-∠ABD=90°-30°=60°.(2分)
∵AC是⊙O的切线,
∴∠CAO=90°.(3分)
又∠AOC=2∠ABD=60°,
∴∠C=180°-∠AOC-∠CAO=180°-60°-90°=30°.(4分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询