如图甲,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC

如图甲,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.(1)如图甲中,PG与PC的位置关系是______... 如图甲,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.(1)如图甲中,PG与PC的位置关系是______,数量关系是______;(2)如图乙将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD和矩形BEFG”其它条件不变,求证:PG=PC. 展开
 我来答
乐百氏131
2014-09-30 · TA获得超过504个赞
知道答主
回答量:191
采纳率:100%
帮助的人:53.4万
展开全部
解答:证明:(1)PG⊥PC,PG=PC;
延长GP交CD于H,

∵P是DF中点,∴DP=FP,
∵点ABE在同一直线上,
∴DC∥GF,
∴∠FDC=∠GFP,
∵在△DPH和△GPF中,
∠FDC=∠GFP
DP=FP
∠DPH=∠FPG

∴△DPH≌△GPF(ASA)
∴HP=GP,GF=DH,
∴CH=CG,
又∵∠HCG=90°,
∴RT△HCG中,P为HG中点,
∴PC=
1
2
GH=PG,PC⊥PG;
(2)延长GP交CD于H,

∵P是DF中点,∴DP=FP,
∵点ABE在同一直线上,
∴DC∥GF,
∴∠FDC=∠GFP
∵在△DPH和△GPF中,
∠FDC=∠GFP
DP=FP
∠DPH=∠FPG

∠HPD=∠GPF,
∴△DPH≌△GPF(ASA)
∴HP=GP,
又∵∠HCG=90°,
∴RT△HCG中,P为HG中点,
∴PC=
1
2
GH=PG,
即:PG=PC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式