已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)若函数f(x)在x=0时取得极小值,

已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;(Ⅱ)在(Ⅰ)的条件下,设由f(... 已知函数f(x)=(x2+ax+a)e-x,(a为常数,e为自然对数的底).(Ⅰ)若函数f(x)在x=0时取得极小值,试确定a的取值范围;(Ⅱ)在(Ⅰ)的条件下,设由f(x)的极大值构成的函数为g(x),试判断曲线g(x)只可能与直线2x-3y+m=0、3x-2y+n=0(m,n为确定的常数)中的哪一条相切,并说明理由. 展开
 我来答
发现1247
推荐于2016-02-13 · 超过54用户采纳过TA的回答
知道答主
回答量:181
采纳率:0%
帮助的人:57.2万
展开全部
(Ⅰ)f'(x)=(2x+a)e-x-e-x(x2+ax+a)=e-x[-x2+(2-a)x]=e-x?(-x)?[x-(2-a)],令f'(x)=0,
得x=0或x=2-a,
当a=2时,f'(x)=-x2e-x≤0恒成立,此时f(x)单调递减;
当a<2时,f'(x)<0时,2-a>0,
若x<0,则f'(x)<0,若0<x<2-a,则f'(x)>0,x=0是函数f(x)的极小值点;
当a>2时,2-a<0,若x>0,则,若2-a<x<0,则f'(x)>0,
此时x=0是函数f(x)的极大值点,
综上所述,使函数f(x)在x=0时取得极小值的a的取值范围是a<2
(Ⅱ)由(Ⅰ)知a<2,且当x>2-a时,f'(x)<0,
因此x=2-a是f(x)的极大值点,fmax(x)=f(2-a)=(4-a)ea-2
于是g(x)=(4-x)ex-2(x<2)
g'(x)=-ex-2+ex-2(4-x)=(3-x)ex-2,令h(x)=(3-x)ex-2(x<2),
则h'(x)=(2-x)ex-2>0恒成立,
即h(x)在(-∞,2)是增函数,
所以当x<2时,h(x)<h(2)=(3-2)e2-2=1,即恒有g'(x)<1,
又直线2x-3y+m=0的斜率为
2
3
,直线3x-2y+n=0的斜率为
3
2

所以由导数的几何意义知曲线g(x)只可能与直线2x-3y+m=0相切.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式