如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在B... 如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值. 展开
 我来答
卞之安
推荐于2016-12-01 · TA获得超过105个赞
知道答主
回答量:119
采纳率:57%
帮助的人:58.7万
展开全部
(1)见解析
(2)见解析

(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠ACF =60°,AC=AB,从而求证△ABE≌△ACF,即可求得BE=CF。
(2)由△ABE≌△ACF可得S ABE =S ACF ,故根据S 四边形AEC F=S AEC +S ACF =S AEC +S AB E=S ABC 即可得四边形AECF的面积是定值。当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,根据S CEF =S 四边形AECF -S AEF ,则△CEF的面积就会最大。
解:(1)证明:如图,连接AC

∵四边形ABCD为菱形,∠BAD=120°,
∠BAE+∠EAC=60°,∠FAC+∠EAC=60°,
∴∠BAE=∠FAC。
∵∠BAD=120°,∴∠ABF=60°。
∴△ABC和△ACD为等边三角形。
∴∠ACF=60°,AC=AB。∴∠ABE=∠AFC。
∴在△ABE和△ACF中,∵∠BAE=∠FAC,AB=AC,∠ABE=∠AFC,
∴△ABE≌△ACF(ASA)。∴BE=CF。
(2)四边形AECF的面积不变,△CEF的面积发生变化。理由如下:

由(1)得△ABE≌△ACF,则S ABE =S ACF
∴S 四边形AECF =S AEC +S ACF =S AEC +S ABE =S ABC ,是定值。
作AH⊥BC于H点,则BH=2,

由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短.
故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,
又S CEF =S 四边形AECF ﹣S AEF ,则此时△CEF的面积就会最大.
∴S CEF =S 四边形AECF ﹣S AEF
∴△CEF的面积的最大值是
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式