已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F

已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EO... 已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F. (1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长. 展开
 我来答
昆621
推荐于2016-08-19 · TA获得超过147个赞
知道答主
回答量:111
采纳率:50%
帮助的人:104万
展开全部
解:(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC。∴∠OAE=∠OCF。
在△AOE和△COF中,∵
∴△AOE≌△COF(ASA)。
(2)∵∠BAD=60°,∴∠DAO= ∠BAD= ×60°=30°。
∵∠EOD=30°,∴∠AOE=90°﹣30°=60°。
∴∠AEF=180°﹣∠BOD﹣∠AOE=180°﹣30°﹣60°=90°。
∵菱形的边长为2,∠DAO=30°,∴OD= AD= ×2=1。


∵菱形的边长为2,∠BAD=60°,∴高
在Rt△CEF中,


试题分析:(1)根据菱形的对角线互相平分可得AO=CO,对边平行可得AD∥BC,再利用两直线平行,内错角相等可得∠OAE=∠OCF,然后利用“角边角”证明△AOE和△COF全等。
(2)根据菱形的对角线平分一组对角求出∠DAO=30°,然后求出∠AEF=90°,然后求出AO的长,再求出EF的长,然后在Rt△CEF中,利用勾股定理列式计算即可得解。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式